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The research being reported was directed to the alleviation of the shortcomings
referred to above. The following specific results have been obtained. For any 2-D discrete
first quadrant quarter-plane causal linear shift-variant (LSV) system, whose impulse res-
ponse is a K-th order degenerate sequence, a K-th order state-space model was obtained.
This model is recursive and is based on a three-term recurrence formula relating any point
in the state-space to its three closest neighboring points and the current input. The
state-space model was extended in order to model 2-D discrete LSV systems with support on a
causality cone. Subsequently, the 2-D quarter-plane causal and weakly causal discrete
models were generalized to the n-D(n>2) case. The resulting state-space models are recur-
sive and are based on a (20-1)-~points recurrence formula, which for the causal case uses the
(20-1)-closest neighboring points in addition to the input in order to compute any current
output state. For the weakly causal case, the (2R-1) computed outputs required are not, in
general, the closest neighbors to the output presently being computed. Conditions for the
existence of a 2-D state-space model for the inverse system were obtained and with these
conditions satisfied, a state-space model of the inverse system is readily derivable from
the original one. Models for the 2-D LSV system and its inverse can be used to perform
analysis and deconvolution problems very efficiently. This was substantiated from derived
expressions for space-time computational complexities.

Examples of physically motivated applications making use of the theoretical results
developed have been worked out. These applications include effects of 1~D LSV motion blur
and the blurring due to Seidel aberration of a lens; in particular, the 2-D LSV coma aber-
ration was studied in detail. The reconstruction of the original object from the LSV
blurred image was carried out successfully by means of the state-space model for the in,
verse system. For the construction of the state-space model, the impulse responses of t..
blurring phenomena were approximated in 3 degenerate form via series expansion using
orthogonal functions.

The problem of restoring images degraded by phenomena, which can be modeled by linear
shift-invariant systems, has been discussed above. Sometimes, the degrading phenomena may
not be accurately modeled by systems that are restricted to be linear. 1In such cases, the
incorporation of the second-order term of a Volterra series (characterizing the input/output
behavior of the nonlinear system), which forms a class of bilinear systems, improves sub-
slantially the measure of adequacy for thie model. This type of bilinear systewm occurs in
imaging through turbulent atmosphere, coherent imaging through systems with time-varying
pupils, etc. Recent research results on bilinearly distorted images are available based on
finite impulse response linear digital filtering and Bayesian methods. Here, additional
methods have been investigated for restoring images, which are distorted by a system that is
describable by the second-order term of the Volterra series. When the blurring phenomenon is
nonlinear and can be modeled either by a shift-invariant of shift-variant bilinear system,

f the data restoration problem can be most conveniently formulated as a special system of

- linear equations with nonnegative coefficients whose solution is required to satisfy con-

N straints like nomnegativity in addition to being factorable with the factors having a certainﬁ
- characterizing property. An algorithm implementing this objective along with another

" important alternative applicable to a specialized model are discussed in the research report.
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b. Research Objectives

To a great extent the techniques for analysis and res-
toration of images has been developed under the assumption
that the system is linear shift-invariant (LSI). These
techniques are successful in some cases because a system
which is diffraction-limited or a system whose object plane
undergoes uniform linear motion perpendicular to the system
reference axis does indeed satisfy these assumptions.

However, LSI systems are singled out for study mainly be-

cause of the widespread understanding of the Fourier Trans-
form theory along with well-known fast algorithms for its
implementation. In comparison with LSI systems, very little
work has been done on linear shift-variant LSV)systems. Most
of the research on two dimensional (2-D) LSV systems has been
done on restoration techniques by means of coordinate trans-
formations. This technique, decomposes the LSV system into a
distortion of the input plane followed by a shift-invariant
operation and terminated by a distortion of the output plane.
Essentially, the shift-variant problem is transformed into a
shift-invariant one and the deconvolution or inverse filtering
is done with the well-known shift-invariant methods for this
purpose. The main drawback of image restoration by coordinate
transformation is that it can only be applied to a limited class
of LSV svstems. For one dimensional (l1-D) LSV systems, there
has been some research activity and most of the work has to do
with the reconstruction of motion degraded images. Besides the

already mentioned approaches to image restoration based on
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coordinate transformations, some methods have used 1-D state-space models for
a class of LSV systems. At present the technique for analyﬁis and deconvolu-
tion of LSV systems are either applicable to the 1-D case or to a very restric-
tive class of 2-D LSV systems. It is important to note that the characteriza-
tion of a LSV system by means of the superposition integral or the superposi-
tion sum holds in general, but it is completely impractical for the analysis
and the deconvolution of LSV systems. Therefore, we can conclude that there

is a great need for an efficient and convenient model for LSV systems which
will permit the analysis and deconvolution in a simple form.

One of the primary objectives of this research has been to provide not
only a mathematical structure for the state-space modeling of discrete LSV sys~
tems but to apply this model to the problems of efficient analysis and decon-
volution of multidimensional systems. It is expected that the state-space
model will be useful in system analysis and synthesis. The state-space model
should be useful in solving the problem of deconvolution very efficiently. In
fact, for the noise~free case the deconvolution scheme developed from the state-
space model is considerably more efficient from space as well as time computa-
tional complexity standpoints than other techniques which are currently avail-
able.

A portion of the time for the proposed research was also devoted to the
approximation problem of specified 2-D linear shift-variant impulse responses
by K-th order degenerate approximants.

Several applications require the restoration of bilinearly degraded images.
For example, in coherent optical image processing, the bilinear term in the
Volterra series expansion plays an important role due to the nonlinear n#ture
of partially coherent image formation. The problem of restoration of images
distorted by nonlinear nonzero-spread systems, which appear quite frequently

in real world problems have not been systematically tackled. Therefore, portion




of the research effort was directed to the development of algorithms for digital
restoration of bilinearly degraded images (shift-invariant as well as shift-

variant)
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c. Details of Research Results Obtained

The primary outcomes of the research effort are in the following
two categories:

1. Linear shift-variant multidimensional systems.

2. Restoration of bilinearly degraded images.
Detailed documentation of results obtained in the above mentioned areas

are contained in the succeeding pages of this report.
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Chapter 5

LINEAR SHIFT-VARIANT MULTIDIMENSIONAL SYSTEMS

5.1 Introduction

The study of 1-D time-varying systems, now well-documented
in the literature, was motivated to a great extent by the
need to design adaptive control systems, where the parameters
of the controller are adjusted to counterbalance the fluctu-
ations in process dynamics stemming from changes in environ-
ment. For example, variations of flight conditions (including
flight speed) of supersonic aircrafts and missiles during rapid
-ascent through the atmosphere introduce time-varying parameter
variations. In space flight, relevant problems that had to
be tackled included those [5.1] of transferring a space vehicle
from one orbit to another, rendezvous and interplanetary
guidance. The development of the rigid-body equations of
motion of artificial satellites requires accounting for cyclic
variations of inertial torques that occur as the vehicle
progresses in its orbit. Similarly, successful solution of the
satellite rendezvous problem requires dealing with the combined
complexity of both mass and orbital variations,; for with
both the target and interceptor in orbit, the interceptor
must expend fuel-mass in maneuvering; further, the kinematics
of interceptor guidance introduce additional time-varying
parameters forcing the characterizing differential equations
to have »cth periodic and aperiodic coefficients. Also of
interest is a class of problems which relate to the gyroscopic

stabilization of orbiting satellites. 1In circuit and systems

LA i B R AR
S A e e et e at P T P P O T L T T T I T VS A A



....... e

bl ASh A sl A et et~ S - e S e it e e - g

5.2

theory specific applications concerned with the theory of
modulators, parametric amplifiers and harmonic generators use
linear circuits with periodically varying parameters [5.2].
The developed tools of multidimensional systems theory,
as documented in [(5.3], provide scopes for considerable appli-
cations in a broad range of problems. However, over the last
few years, it is fair to say that the theory of linear
shift-invariant (LSI) two or more dimensional systems have
been well understood. However, with the increased activities
in the area of image processing (optical and digital) many
physical problems are charaterizable by a 2-D linear integral

operator,

ol X

g(x,y) = 7 [ f(u,v) h(x,y;u,v)dv

-0 - 0

where g(x,y), f(x,y) are, respectively, the output and input
while h(x,y;u,v) is the system response at (x,y) to an unit
impulse applied at (u,v). The presence of additive noise in
the preceding input-output model of a physical process could
also be expected. 1In 1977, Goodman state that ''the type of
coherent optical processing which is by far the least explored
to date is that of linear space-variant filtering" [5.4],

and the importance of overcoming this deficiency was realized
because space-variant processing is required in various
optical and digital data processing applications including
restoration of images degraded either by space-variant
aberrations or space-variant motion blur, restoration of radio-
graphs blurred by a space-variant source penumbra, restoration

of rotation blur of 2-D patterns where different cbjects

.......................
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suffer from different blur according to their distance from
the center of rotation and also their angular positions ([5.5],
and performance of particular transformations (like the Mellin
transform and Abel transform). Also, emerging applications in
areas like robotic vision, have necessitated the development
of techniques suitable for recognition patterns which may be
subjected to the effects of unknown rotation and scaling. One
such technique is based on the use of scaled transform (a
modified Fourier transform), which have been shown to be
equivalent to a class of linear shift-variant (LSV) filters,
referred to as the class of "form-invariant" filters [5.6].
Actually, the problem of 2-D images degraded by spatially
varying point spread functions has been tackled since about
the early seventies. Sawchuk [5.7] transformed the spatially
varying problem to a spatially invariant one via coordinate
transformations and as a result some generality in the approach
had to be sacrificed, especially with the presence of additive
noise. In that situation, however, statistics of the noise and
object random processes could change under a geometrical
coordinate transformation. The usual assumption of the minimunm
mean-square error estimation (MMSE) method is that these
statistics are jointly stationary, and this may not be valid
in many cases. Frieden [5.8] developed a positive (an incoherent
object scene is a spatial radiance distribution and cannot
be negative) restoring formula from a statistical communication
theory model of image formation by which the optimal restored
object from a set of candidate objects is required to obey a

principle of maximum entropy. Frieden's approach, though
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The particular structure of the matrices in (5.34) to (5.36)
will allow us to perform the summation in (5.32) by means of
a (Zk-l)-point recursion. This recursion will be a gener-

alization to k-dimensions (k > 2) of the recursion in (5.10)
and the justification will be developed next.

k

To do this,
the following definitions are, first, introduced.
Definition 5.3:

The ng (nj+1) row-vector
defined as

isis.. .1
172 k .
Sy is
i,i,...1 .. .
1-2 k ini,. .. 1
5y 2100 ...0823 Ko L0), (5.3
(il+l)-th block position
from the right
k
where 0 is a
j=2 J

m (n.+1) row-vector of zeros, there are n,y

1

row-vector is indicated above.
row-vector 21

such 0 vectors, and the position of the remaining nonzero

Furthermore, the (nk+l)
is defined as

1y
il &[0 O0...0 1 0 ...07. (5.38)
(ik+l)-th position from
the right

Definition 5.4 ik(j) A sum of all (?) distinct vectors

ii,. . .1
12 k . . _ .0
% WIth 1 = for (:=1,2,....k) and ij+i,+.. .+ =],

1
) i
cefianition 5.5 ik+l(3)

4 sum of all (?) distinct vectors
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where ai(nl,..,nk) (i=1,2,...,K) and Bi(ml,..,mk) (i=1,2,...,
K) are, respectively, linearly independent functions of
(nl,nz,...,nk) and (ml,mz,...,mk).

Substituting (5.30) in (5.29), after carrying out some

manipulations analogous to the ones in Section 5.2, we have

K
y(nl,...,nk) = .Zlai(nl""'nk)xi(nl""’nk)' (5.3D
l=
where
oy Dy ”
x.(ny,..,0,) = ¢ ... I B8.(mq,..,m ) u(m,..,m). (5.3
i'%1 k m=0" 'm0 i\l T 1 T ‘

i=1,2,...,K

The expression in (5.32) can be written in matrix form

% = By (. omd ey, =12, 0K, (5.33)

where 5; and W are vectors of order ([(nl+l)-(n2+l)...

(nk+l)] x 1) obtained, respectively, by ordering the k-

dimensional arrays{xi(il,iz,...,ik)}and{u(il,iz,...,ik)}
(5=0,1,...,nj;j=l,2,...k) by means of a lexicographic ordering,
described next. The element u(jl'jZ""’jk) occurs in row
k-1 k-1
i=1 b og=p L k
for ji=0,l,...,ni, i=1,2,...,k, of the vector u . A
similar lexicographical ordering is given toc the elements
{xi(jl,jz,...,jk)} to form the vector 5&, i=1,2,...,K.
Bi (@ --omy) In (5.33) is a square matrix of order

((nl+l)-(n2+l)...(nk+1)), given by

......................
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into its components and summing over them in equation (5.9).
This derivation, even though simple, cannot be easily

extended to higher dimensions. In this section, the

particular structure of a matrix will be used to our advan-

tage in obtaining a k-D recursive model. First, this will

be done for the case when the impulse response sequence
has support in a positive cone and, subsequently, weakly

causal LSV systems will be tackled.

5 3.1 k-D Positive Cone Causal State-Space Model

A k-D positive cone causal discrete LSV system can be

characterized by the superposition sum

"1 P
y(n;,..,m) = £ ... ¢ h(n,,..,n ;m,,..,mlu(m,,..,m),
1 km1=0mk=01 e R A e R
(5.29)
where u(m) is the input at coordinate point m=(m;,m,,...,m),
y(n) is the output at coordinate point n = (nl,nz,..., k)

and h(n,m) is the response of the system at the point n

to a unit impulse at the point m. At this point, a
definition, which is a natural extension of Definitiom 3.1,
is given.

Definition 5.2: A sequence {h(nl,nz,..,nk;ml,mz,..,mk)}, is

K-th order degenerate if it can be expressed as

K

h(nl, .. ,nk;ml, . ,mk) = iilui(nl, . ,nk)3i(m1, - ,mk), (5.30)

- o R T G c e e -t Y
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&(ny,ny) = 4, (n;,0y)&(R -1,0y) + A,y (ny,0,)E(ny,0y-1)

(5.22)

- 53(n1,n2)g(n1-l,n2-l) + b(n;.ny)ulng,n,)
y(ny,n,y) = &(ny,ny)x(ny,ny), (5.23)

where

A (n;,0y) = I(a;,ny) - T"H(ny-1,0,), (5.24)
éz(nlonz) = E(nl'nz) : z-l(nlgnz'l), | (5.25)
A3(n1,n2) = I(n;,ny) - z'l(nl-l,nz-l), (5.26)
\e é(nl.nz) = I(n;.npb(ny,m,) , (5.27)
é(nl.nz) = g(nl,nz)T'l(nl.nz) . '(5.28)

From the above, we can say that the state-spacé
representation in (5.22) to (5.28) is related to the state-
space model in (5,12) to (5.16) by the transformation

matrix in (5.21).

5.3 k-D State-~Space Model

Now, the results obtained in sections 5.2 will
be extended to the k-dimensional (k > 2) case. The state-
space model in Section 5.2 was obtained by making use of a

geometric argument which consists of splitting a 2-D grid

e . P L U A T PRI I ol T ) A ‘o T .
o, S EBNTN Y s i el Wl WP WP 4 PRI I P L et . . et . N .
b 2 . . 3° . . - . P CERPR ST SR Y 2R 1




v

5(-1,n2) = 0 for n, = 0,1,...,N2, (5.20)

The state-space model introduced in (5.12)-(5.16) is based
on a three term recursion, which means that in order to gen-
erate the state vector x(n;,n,) at a point (n;,n,) we need
to have previously computed the state vectors at the points
(nl-l,nz), (nl,nz-i) and (nl-l,nz-l) in addition to the
current input. See Figure 5.2.

From (5.10), it is easy to see that the states are
decoupled; this is a nice feature which permits parallel
computation of the states.

The state-space model introduced here has a structure
similar to the Fornasini-Marchesini state-space representa-
tion (5.3]. The main difference between these two
models, is that in (5.12) and (5.13) some of the matrices
are non-constant.

The state-space model in (5.12) to (5.16) is not a
unique state-space model representation of the system.

Let x(n;,n,) be a new state vector defined by

é(nl,nz) = z(nl,nz)g(nl,nz). (5.20)

Let the transformation matrix z(nl,nz) be nonsingular for all
points (nl,nz) in the region S, defined in (5.18) . Making
use of this transformation, equatiomns (G.12) to (5.16),

become

...................




5.10
»
3 where
xl(nl,nz)
; X,(n,,n,)
. x(n,,n,) = 2 1 2 , (5.14)
xK(nl,nz)
—_ p—
r
A — —_
8,(n,,n,)
_ 227102
. g(nl,nz) = . , (2.15)
4 \o Q_(nl,nz) = [al(nl,nz), az(nl,pz),...,ax(nl,nz)]. (5.16)
i The initial conditions for the model above are:
s
x(ny,-1) = 0, x(-1,ny) =0 ny,n, =0,1,2,... (5.17)
;' If the input array{u(nl,nzn has a finite support
®
S = {(nl,nz), 0 <ny <Ny, 0 20y <Ny} oy (5,18)
. and we are interested in computing the output y(nl,nz) on S,
- then we only require a finite set of boundary conditions,
which is given by
3 1) = -
) - §(n1, D 0 for ny O,l,...,N1 , (5.19)
]
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2
1
1
n2 L n2 ----- .
nz-l nz-l
+ — + l
L.
o _ S
: n -1 ny nl-l ny
- Figure 5.1: Decomposition of rectangular grid for obtaining
Ne recursion
; N2
(nl'nz)
2 — @ >
S i —_—
'
. |
f n-lom N
°
}.3 Figure 5.2: Neighbors of (n ,n2) required to compute
S state at (nl,nz} by the state-space model
@
.
(]
%

N P PR S RN AL TR e e e admaiana tatadatas e e




VIR BB ey 0 2 e e o

,*.*T'vvvv

Let us consider xi(nl,nz) for an arbitrary but fixed i,
i=1,2,...,K. Splitting the summation in (5.8) according
to the masks in Figure 5.1, we have

ni-1 n, .

b 8. (m,,m,)u(m,,m,) +
_ _ iv1r T2 1'72

4=
xi(nl,nz) = I

T {. Bi(ml,mz)u(ml,mz) (5.9)

Bi(nl,nz)u(nl,nz).

Substituting (5.8) in (5.9) and making use of (5,7) , we

have

xi(nl,nz) = xi(nl-l,nz) + xi(nl,nz-l) - xi(nl-l,nz-l)

+ Si(nltnz)u<nl;n2) i=1121--°1K * (5.

I o1 R
H

y(n,,n,) =
1°7°2 i

Equations (5.10) and (5.11) can be rewritten as

g(nl,nz) = §(nl—1,n2) + §(n1,n2-l) - §(n1-1,n2-1)

(5.

+§(nl,n2)u(n1,n2) )

y(ny,n,) = c(ng,ny)x(ng,ny) (5.

ai(nl,nz)xi(nl,nz) . (5.

10)

11)

12)

13)




A AR AR AL A MU L e o

-
-
g
4
4
b
b
3

TT—— - v \ ey o
— . TR ——— P W rp—— " Padeareaes oo 9 - a v

Let h(nl.nz; ml,mz) be the impulse response of a 2-D
first quadrant quarter-plane causal discrete LSV system,
and let u(nl,nz) be the input to the system with support in

the first quadrant. Then,
h(nl,nz; ml.mz) =0 for N, < m OF Ny < my, (5.3)
and
u(nl,nz) = 0 for ﬁl < 0 or n, < 0. (5.4)

Substituting (5.3) and (5.4) in (5.1) the input-output

relation is given by

nl n2
y(n,,n,) = I ¢ h(n,y,n,; my,m,u(m,,m,) . (5.5)
1°72 m,=0 m,=0 1°f23 Bp.Wplulmy .ty >

If the impulse response h(nl,nz; ml,mz) is a K-th order
degenerate sequence given by (5.2),.then, substituting
(5.2) in (5,5) we have
i T R 4
y(ny,ny) = m;;o m;;o(iil a; (ny,n9)8; (my,my))u(my,my), (5.6)
After some manipulations involﬁing the interchanging of

summations, we obtain

K

y(nl,nz) = .zl ai(nl,nz)xi(nl,nz), (5.7)
l’

where
( Ry mpata e |
x.(n,,n,4) = t  38.(m,, u(m,,m,) . (5.8)
i'ft1et2 n,=0 m,=0 1™ 1™

i=1,2,...,K
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Linear Shift-Invariant systems the sum in (5.1) gets trans-
formed into the standard 2-D convolution and there are
very efficient techniques férnéalculatlng the 2-D dlscrete
convolution. These techniques include transform domain
methods that make use of fast algorithms and there are
also state-space models for recursive implementation in the
spatial domain {ch. 4 in 5.3].

For LSV systems; the transform domain techniques cannot
be used in general and, in addition to this, there are,
as yet no state-space recursive models for 2-D LSV systems.
Some very restrictive l-D state-space models for LSV
systems have appeared in the literature. They permit the .
analysis of 1-D LSV systems under very strong restrictions

imposed on the impulse response [5.1£7], ([5.17].

5.2 2-D Quarter Plane Causal State-Space Model

In order to develop a state-space model, the following
definition has to be introduced as a natural extension
of the 1-D case [5.14].

Definition 5.1l: A sequence {h(nl,nz; ml,mz)} is a K-th

order degenerate sequence if it can be expressed as

K
h(nl;n2§ ml'mz) lilal(n nz)Bi(ml,m2> ) (5.2)
where °i(nl’n2) (i=1,2,...,K) and si(ml,mz) (i=1,2,...,K)

are, respectively, linearly independent functions of

(nl,nz) and (ml,mz).
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5.5

(where the impulse response sequence was assumed to be either
expressible or approximated in k-th order degenerate form)
domains. In thie chapter attention will be focused on the
development of a state-space model for a k-D LSV system whose
impulse response 1is éxpressible in K-th order degenerate form.
For convenience in exposition, the development of the model
will be initiated for the 2-D quarter-plane causal case and a
complete proof for the feasibility of extension to the k-D
(k > 2) case based on a (Zk-l)-point recursion will be given.
The possibility of generalizing the model to cover multi-
dimensional weakly causal LSV systems will be substantiated.
The model for the inverse system will be derived and applied
to problems in deconvolution. Nontrivial physically motivated
examples will be included.

' A two dimensional discrete LSV system can be described

by the discrete sum

repag) = T L LR TR D

where u(m) is the input at coordinate point gs(ml,mz),
y(n) is the output at coordinate point gé(nl,nz) and
h(nl,nz; m,,m,) is the response of the sytem at the point n
to a unit impulse at the point m.

The input-output relation in‘(s.i) is far from being
very convenient because it is not récursive and, therefore,
the amount of computational time required for implementing

the relation will be very large. In the case of 2-D discrete

...................
.............

+J
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5.4

sufficiently general, poses some dimensionality problems in

I o an (oruEn
o

implementation, in spite of the fact that the restorations

besides being positive are spatially smooth and not overly
sensitive to noise in the image data at object points that are
near the background radiance. Then, there is the class of
iterative methods based on gradient type [5.9] and conjugate
gradient type [5.10] of optimization procedures. Iterative
methods are not very suited for image restoration because of
the problem of noise suppression. If the blurred image to

be processed includes a noise, then this noise strongly

deteriorates the quality of the restored image as the number

of iterations increase. Thus, a method is desired that enables
one to suppress noise amplification more efficiently, while
restoring the image sharply. The three ways to suppress noise
amplification are: (1) stop the iterations at a moderate
iteration number; (2) introduce constraints; and (3) reblur
the blurred image as done in [5.11] for LSI systems. In spite
of these efforts, the general problem of space-time computa-
tional complexity has limited the use of practically all
methods (including those already cited and others [5.12],
[5.13]1), in shift-variant multidimensional problems.

A more general approach than that permitted via use of

coordinate transformation was pursued recently in [5.14],

where the analysis was restricted to one-dimensional (1-D)
discrete LSV systems. Investigations, however, were carried

out both in the frequency (using the discrete version of

e . Zadeh's generalized transfer function introduced in the
=
- discussion of continuous time systems [5.15]) and time
o

LA A e D S ¢-~.x.'----‘-‘>~v\'\ R . -1‘-'.\'»'.‘ .
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AR AR, |

ii,1,...1
s > T wien 4 -

i, BB S
a8 e

0 0
{lor , i = lor (2=2,3,...,k+1) and
1

i+, ki =5

Therorem 5.1: Given the matrices in (5.34) to (5,36), then

for any integer k > 1, we have

"‘"»'-I. Dl i)

00...0 k 3+1 .
ik E’i;k(nl""nk) = Jil("l) gk(J)El,k(nl..nk)
00...0

+ Ek Bi(nl""nk)' (5.39

Proof: (by induction)

For k=1

T T
Bi(O)
3;(0) ;1)
gi’l(nl) = : : . (5.40)

Bi(O) Bi(l) e Bi(nl)

S B

The last row of gi l(nl) in (5.40) can be expressed as

[si<0) 8, (1) ... si(nl)] = [ei(O) si(l) - Si(nl-l)Ol +
(0 0...0 113;(n) . (5.41)

Making use of Definitions 5.3 and 5.4, the expression in (5.41)
can be written as

0 0

. PR . s ¥ L - . . “
A Py Py P oY e awe. e Zoa b - ° 4 L ERAPUD Ui Whit Tl Y The WA Yl o PP Y Th VAU - -
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which corresponds to the expression in (5.39) for k=1.

From the matrices in (5.34) to (5.36), for any integer k > 1,

we can write

i213"‘ik+l' ny

0 0 ... 0 & Bik (mpom3e--imyyy)]
. . . . . (5.43)
_ (:01213"‘1k+1 i 3.1213...1k+1)B S .
k+1 %k+1 —i,k+1 1727 T k+1) -

If we now assume that the hypothesis is valid for a fixed

integer k, with ny fixed, we can write

‘OO...O ny k 541 L.
_3_k _B_i’k(nz....,nk_‘_l) = j-z_-l(-l) gk(J)-B-i,k(nZ"’nk+l)
00...0
5.44
+ gk Bi<n1’n2""'nk+l)° ( )
Also from (5,43), after setting i2=i3=...=ik+l=0, we have
00...0 100...0
41 Birt P M) T S By ey migy)
00...0 n
+ 00 ... 0 Sy Ei,k(nZ""'nk+l)]
(5.45)
Substituting (5.44) in (5.45), we have
00...0 10...0
Sl B o)) T S By i (P
k . n
- (_1yJtL s 1
00...0
+ [9_ 9..._0_ ik 8k+1(nl,-..,nk+l)] .
(5.46)
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From (5.43), making use of Definitions 5.4 and 5.5, we

obtain
S |
o 1 ,
= G () - e OBy iy (g | (5.47)

Also, from Definition 5.3, we have

S 00..0

00..0
Sp+1 Bi k+1(MpreooMpyq) =

; [9_ _O__O_ -i-k+l(nl""nk+1)] = £k+l Bk'*'l(nl""nk'*'l)' (5.48)
S

i.

. Substituting (5.47) and (5.48) in (5.46), we have

-

T

Vo 10..0 41,0 1
[E-k'i'l + Jil('l) (:—k‘*'l(‘])-g-k-l'l(’])) ]Ei,k+1(nl" . 'nk"’l)
00..0
+ '6‘k+1 -B'i,k+l(nl" . ’nk.+l)' (549)
From Definition 5.4, it is straight forward to show that
o 10..0 0
' S Toop (D, 3=1
{ 0 1
Z_k_.l.l(j) = c—k+l<J) + \Z_k+l(J'l)s j=2’3t---’k (5.50)
[ ] 1 .
[ I )+l (k), j=k+l
a3
: Consider now the expression in square brackets in (5.49),
()
A
g
:‘.
°
L e e R O D R C Tty
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10..0 k j+1 0 ] 1 ‘
§—k+l + Jil(‘l) (zk'i"l(‘]) - zk'i'l(']))
100..0 0 k j+1 0 1
TSt (D L DTG () F 20 G010
+ (-1 kDL . (k) (5.50)
—&+1 '
Substituting (5.50) in (5.51), we have
100..0 k j+1 0 . 1 .
Sl F LD g (D5 ()
k+1 .
=t DI g . (5.52)
j=1
Substituting (5.52) in (5,4§), we have
00..0
Ss1 Bi k+1(mys - omyeqy)
k+1 .
= _1y g+l .
557 e (PR e (g Bie)
.. 00..0
:-‘ which corresponds to the hypothesis for k+l. Therefore,
by the principle of mathematical induction, the proof is
°
- now complete.
The following definition has to be introduced at this
% point:
y

............. P
) R o —g r"f‘l—"f""'*fﬁ'vr‘ffw
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5.22
Definition 5.6: Define,
. &
J = I - -
xi(nl,nz,...,nk) sil x; (ng rs(l), n, rs(2),...,nk rs(k)]
k _ .
where ¢ rs(i)=j, rs(i)=0 or 1 for each i and the sets
i=1
i (1), T,(2),..., £ (O}, s=1,2,...,(1j‘> are mutually distinct.

Theorem 5.2: Given a k-D,(k > 1), positive cone causal LSV

system whose impulse response is a K-th order degenerate
sequence characterized by expression (5.30). Then, the
superposition sum in (5.29) can be implemented by a K-th
order state-space model. This state-space model is based

on a (Zk—l)-point recursion described by,

xi(nl,.., k) = jgl(-l)j+lxg(nl,..,nk) + Bi(nl,..,nk)u(nl,..,nk)
i=1,2,...,K, (5.54)
) K
y(nl,..,nk) = iilai(nl""nk)xi(nl""nk)' (5.55)

Proof: From expressions (5.33) to (5.36), making use of

Definition 5.3, we have

- . ‘ iliz..ik .
Xi(nl-ll’nz-IZ’..,nk-lk) = _S_k Ei’k(nl". ’nk)“l'k (5.56)
i=1,2,...,K |

Substituting the expression (5.39) of Theorem 5.1 in (5.56),

after setting il=iz=...=ik=0,
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k j+1 .
x;(ny,..,%) = jil(-l) 3 (DB (ryy i)y
00..0
Th o By (5.57)

From (5.56), making use of Definitions 5.4 and.5.6, we have
J = - (3
Xi(nl,.., k) _-l_k(,]) gi,k(nln-c,nk)% . (5.58)

From the ordering defined for the vector ., we have

00..0
u(nl,..,nk) = S W . (5.59)

Substituting (5,58) and (5.59) in (5.57), we obtain the
expression in (5.54) The recursion is based on g¢-points,
where

k

r = ¢ (5 =2k1 (5.60)
=1

The proof is now complete.




[—si(o,m - r;(O,-O—)
3,0,0) 8,(0,1) u(0,1)
5,(0,0) 3,(0,1) 8,(0,2) u(0,2)
3,(0,0) 8, (1,0) u(1,0)
3,(0,0) 8.(0,1) 8,(1,0) 8,(1,1) u(l,1)

;31(0,0) 8,(0,1) 3,(0,2) 2,(1,0) 8,(1,1) 8.(1,2) u(l,2)

| 3,€0,0) 8, (1,0) 3,(2,0) u(2,0)

231(0,0) 3,(0,1) 8,(1,0) 8,(1,1) 3,(2,0) 8,(2,1) u(2,1) |
5i(0,0) Si(O,l) 31(0,2) Bi(l,O) Bi(l,l) 81(1,2) 31(2,0) Si(Z,l) Bi(2,2) u(Z,E)—

[— —
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The example below serves to clarify the various notations
introduced in the preceding discussion. For brevity in
exposition, this example tackles the k=2 case, for which the
3-point recursion arrived at in section 5.2 is verified as

a special case of the general result.

Example 5.1 Consider (5.32) for the case, k=2. Then, the

expression
L )
X.(nq,n4) = T 8.(my,my)u(m,,m,),
ivr1et2 m1=° m2=0 iM1T2 1°7°2

is considered for the case when nl=n2=2. Then counterpart of

the matrix form representation in (5.33) is given below in

expanded form. Note that the lexicographical ordering described

has been adopted. It is clear that in the k=2 case, this
ordering results from a row-by-row scan of each of the arrays

{xi(il,iz)} and {u(il,iz)}.

(5.61a)

o N G PR S S LR L VPP I Y Wi G U Ty P I O U R U PRI P P D P DN
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Specializing the representation in (5.33) to this case,

(5.61la) can be written as,

where,

Bi 2(np.my)=

and

N -
Bi,1(mp)

Clearly,

of the matrices in (5.34)-(5.36).

and 5.4 to the

xi =
=2

0
B; 1(np)

0
Bi 1(np)

0
Bi,1(np)

25 (3,0

8;(3,0)

[ £;(3,0)

Bi,2(mpmp) Yy,

1
Bi 1(mp)
1 2
Bi 1(np) By 1(ny)
5, (3, 1)
5, (3, 1) 8,(3.m)

case under consideration, we have
00 | |
5, = (000} 000! 001],
530 = {0001 0011 0007,
]
591 = (000} 000} 0107,
1 1
531 = (000! 010! 0007,
~ 01, .10
2,1 = 8" *+ 57,
11
202 = 5
RN A SRR

) (5.61b)

(5.61c)

(5.61b) and (5.61lc) give the relevant specializations

Applying Definitions 5.3

T

- ﬁrfi
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Let Ej denote the j-th row in the matrix gi 2 of (5.61la),

j=1,2,...,9. Clearly

Ig =£8+£6 - £5+ (00 ... 0 Bi(2,2)]

the above equation can be rewritten in the form,

00 o1 10
897 B; o(npiny) = 857 By H(ng,ny) + 857B; H(ny,my)
11 00
S Sy By o(mpmp) + 57 23 (2.2

= 35 (DB; 5(ny.my) - 25(2)B; 5 (ny,my)

00 |
+ 35 ai(2,2) , (5.62)
which is the relevant specialization of (5.39).
Note that,
s sy = 1_] .
Ve xi(nl i,n, ) _{3_2 -B-i,Z(nl’nZ) u,. (5.63)

Multiplying (5.62) from the right by 4, and using (5.63),
we get
xi(nl,nz) = xi(nl,nz-l) + xi(nl-l,nz)
(5.64)
- xi(nl-l,nz—l) + Bi(nl,nz)u(nl,nzy

Applying Definition 5.6,

x%(nl,nz) = %, (ny-1,ny) + %, (ny,n,-1), (5.65a)
xf(nl,nz) = x;(a;-1,n,-1). (5.65b)
Substituting (5.65a) and (5.65b) in (5.64) we get

.1 2 )
Xi<“1'n2) = xi(nl,nz) - xi(nl,nz) + ~i(nl,n2)u(nl,n2),

which is the relevant specialization of (5.54).
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5.3.2 Extension of the k-D State-Space Model to a Causality
Hypercone

The state-space model developed in Section 3.3.1 for
a k-dimensional positive cone (or hypercone) causal discrete
LSV system, can be naturally extended in order to represent
a k-dimensional (k > 2) weakly causal discrete LSV system.
Definitions 5.7 and 5.8 given next, are introduced in order
to reach the desired goal.

Definition 5.7: A k-dimensiomal causality hypercone Cc; is

the intersection of k half hyperplanes Hp;,,P;5. - P
(i=1,2,...,k), where
H. = ((x ) ! (x ) ¢ RS
pil'piz,".'pik l" -rxk { lp-~-’xk ’
Pj1¥p *-- -t Py 2 0}
(i=1,2,...,k)
and pij(i,j=l,2,...,k) are non-negative integers,
satisfying
det ¢ = 1,
where
| Pu1 P12 oo P!
34 ! § (5.66)
o
| Pel Pe2 ot Puk

It is important to note that in a k-dimensional causal-
ity cone CC, any vector v going from the origin to a point

P in Cc can be expressed as a linear combination of the

e oo ‘.- e e R I T e e
PR PP PR IS P L. PRI, e e

’v*:'*.".-.*.—'.f.vrv-‘*1
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vectors g, i=1,2,...,k. These vectors are called the
generator of the causality cone and it can be shown that
the generator gi,i=l,2,...,k corresponds to the i-th
column of the adjoint of the unimodular transformation
matrix 2.

Definition 5.8: A k-D discrete LSV system with impulse

response h(nl,...,nk;ml,...,mk), is causal on a causality

hypercone C, if and only if
h(nl,-..,nk;ml,..-pnk) = o for (ﬂ'l)---)‘Q‘k) & Cc)

with li =n;, -@m (i=1,2,...,k).

The one-to-one and onto mapping ¢, defined in (5.66),
maps any integer point in Cc onto a unique integer point in

the positive cone Ql

»: C 0 2 Q, 0 7% and #((0,0,..,0)1=¢0,0,..,0),

Given a k-D discrete LSV system with a K-th order degenerate
impulse response, whichis causal in Cc’ then use of the

mapping ¢ defined in (5.66) and its inverse, a state-space

model can be derived. The resulting K-th order state-space
model Will be based on a (Zk-l)-points recursion. For the

sake of clarity and brevity in exposition, the procedure is
described for the 2-D case, from which the k-D (k> 2)

counterpart can be obtained as a direct generalization.

T A S P - U S P U LT VISP WAL G G SRR AL T WA I IPAL W WAL TSP NP
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Let
y(ny,ny) = DI h(ng,ny; my,my)ulm,,m,),
(ml.mz)e:Cc

(nl,nz) E‘.Cc

(5.67)

be the input-output relation of a discrete LSV system, and
let*h(nl,nz; ml,mz)}be causal in Co- In addition to this,
assume thatih(nl,nz; ml,mz)}is a K-th order degenerate
sequence expressed as in (5.2). Using the map ¢ in (5.66)
with k=2, . we map the input, the output and the

impulse response in (5.67), as follows

W@y .8y) = ulmy,my) | ‘ (5.682)
m _ m
D =t by
m 2
n n
1 -1 1
ChH o= h
kY] )
and
ﬁ(nl,nz;ml,mz) = h(nl,nz;ml,mz) . (5.68¢)
. m _q m
() = o7t h
2 2
n n
1 -1,%1
(%) = ¢ ~(27)
) iy

Then, h(nl,nz; ml,mz) is first quadrant quarter plane
causal. The input array ﬁ(ﬁl,ﬁz) and the output array

;(ﬁl,ﬁz) have support aon Q;. In addition to this, from

NS
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(5.2) and (5.68¢c) h(fy,f,;fy,@,)) is a K-th order degenerate
sequence, and it can be written as '
K

h(n,,n,; m,,m,) =
1'h2f M) T L

where

i .
| n n
1, - .-1,1
\(nz) b (ﬁz)r (5.70a)
ai(ml,mz) = si(ml,mz)'
m o
1 -1,71
() = ¢ (7)) - 5.70b
o, i, ( )
From (5.67) and (5.68), we have
v(n,,0 ﬁl ﬁz h(n. ,n m, ,m,)u(m, ,T ( )
y(n,,n,) = I t h(n,,n,; m,,m,)u(m,,m,) . (5.71
172 2,=0 m,=0 1’02 Tp1e®2 1M

For the first quadrant quarter plane causal LSV system in
(5.71), with its impulse response given by (5,695, we can
now write, using equations (5.12) to (5.15), a state-
space model with support on Ql'

x(f;,0,) = x(n;-1,15) + x(n;,0,-1)
. . A (5.72)
- x(n;-1,n,-1) + b(nq,ny)ulny,n,) . ‘ '

§G Ay = 2GR ARG Ay




where

By =| 0 (5.73a)
BK(nl,nz)
c(ny,ny) = [ay(ng,ny),...,0p(ay,05) ], (5.73b)
The initial conditions are:
(5.73¢c)

x(a;,-1) =0, x(-1,n)) =0 ny,n, = 0,1,2,...

Mapping back to Cc the state-space equation described in (5.72)

and (5.73), (for notational brevity, replace P11:P12'P21+P22
in (5.66) by p, r, q, t, respectively)
x(ny,0,) = x(n;-t,ny+q) + x(n +r,n,-p)
(5.74a)
- x(n tr-t,ny+q-p) + b(ny,ny)ulng,ny), (ny,m,) ¢ C,

Y(nl’ni) = S(nlfnZ)ﬁ(nl’nZ)’ (nl,nz) € CC’ (5.74b)

where
Bl(nl'nZ)
b(ny,n,) = : , (5.75a)
8.,(ny,0,)
K Y172
L —
S(nlynz) = [3l(nl:n2), ey aK(nl,nz)], (5.75b)
The initial conditions are:
x(tn+r,-qn-p) = 0, x(-rn-t,pn+q) = 0 (5.75¢)
n=0,1,...
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where ho(xl,xz) is the response to an impulse at 11=l, 12=O;

TN aeer— ‘.T..—wrw—‘?v.v.w,,v....w--r—-_,,T

1 r.cos(9,-8 )-r r_ sin(s,-8_)
R(z;.85570,3,) = o~ By(——Fp—"2 41, 22— 29, (5.90)
ro ro 10

where the function hO(xi'yi) is the response to an impulse
at ro=l, eo=0. The form of ho(-) for several special cases
such as spherical and coma aberrations are derived im [5.29].
For Cartesian coordinates (xl,xz) and (rl,rz) of the image

and object planes, respectively, we have

X r.COs5,;

(5.91)

x2 = risxnai 12 rOSlneo

Substituting (3.91) in (5.90), the impulse
response in Cartesian coordinates, h(xl,xz;rl,rz), for

the coma aberration becomes

! R A R TR )
h(xl,x2;Tl,T2) = Z_*_ ) ho( Y i ’ 7 7 ), (5.92)
Tl 1'2 Tl + 12 Tl + 12

.

that is, ho(xl,xz) = h(xl,xz;l,O), is given by

2C c : ,
or (x4,X e 1
/2 2 1'72 ,
ho(xl,xz) = (5.93)
C .
'7;52222;5 for (xy,x%,) ¢ II,
Xy --3x2

........ T s e P I I PN
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derived in (5.88)-(5.89), a stat2-sdace mcdel of the
inverse system was implementec.

The (32x32)-points original cbject, shown in Figure
(5.4a) was blurred by the simulared metion blur described
in (5.86) with the parameters in (5.8.)) and (5.84) taken
typically as T=1, 2=2, a=1 and .=.2. The resulting motion
blurred image is shown in Figure (5.4b).  From the motion
blurred image in Figure (5.4b) by using a (2-K+1)-th, (K=10),
state-space model of the inverse system, the original object
was reconstructed. The reconstructed object is shown in
Figure (5.4c), From Figure (5.4c), we can conclude that
for a fairly low order state-space model, the reconstruction

is very accurate.

5.5.2 Coma Aberration

Within the geometrical optics model of image formation,
aberrations are described by the ray aberration function
which is a vector in the image (output) plane from the
Gaussian image point to the point where the ray actually
intersects the image plane. The Gaussian image point is

the image in the output plane of a point in the input plane
in absence of optical aberrations. Let (ri,ei) and (ro,ao)

denote, respectively, the polar coordinates of the image
and object planes. It has been shown in a paper by Robbins

r.,3.),

and Huang ([5.19] that the impulse response, h(ri,ai; I

for coma aberration is given by
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Figure 5.4c: Restored object from motion blurred image
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Figure 5.4b: Motion blurred image
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(NxN) of the input array. The discrete motion blurring is

carried out, line by line, by means of the following

expression
n,y .
Y(nl,nz) = Z— hD(nl’ml)u(ml’nZ) . (5.86)
ml—O
ni=0,1,...,N-l, i=1,2

Analogously, before implementing a discrete state-space
model for the inverse system, the approximated impulse
response h*(x,u) in (5.84), has to be discretized, and the

resulting discrete impulse response hg(n,m) is given by
hf(n,m) = h*(n-4,m-a), (5.87)

where A has been previously defined. Then, from (5.87) and

(5-84)-(5.35), we have

2K
hn,m) = T ey (s (), (5.88)
where

ag(n) =1 , z24(m) = ag(ma), (5.89a)

a;(n) = cos(n-2n i-a) . 8;(m) = a;(ms), i=1,...,K .
TP (5.89b)

a;(n) = sinn. 25 4a), g, (m) = b (ms), i=k+1,...,2K ,
P (5.89¢)

From the (2-K+l)-th order degenerate sequence, {h}(n,m)}




13%37 . {akcos(wk(uz-dz))cos(wkd) + g; cos(wkul)},
L g2k (5.85¢)
b, (u) = by 1T o
oy | 8ie08 (4 (uy-d))cos (e d) + - cos (wuy)
d . T 1 2k
- =sin(sg~u,) , = =5
k=1,2,... ,
where
2k
Wk T H
w
. Kk 1
o =2 (— 7 " ks )
T(wk - (‘D—z)
B, = 2 ( 1 - )
k . m 2kn 7
2 T(Wk + 'D—Z-)
d = D2/2

In order to simulate the motion blurring phenomenon on
a digital computer, the impulse response ﬁ(x,u) in (5.83)
was discretized and BD(n,m) corresponds to the discrete

version of (5.83), where

~

hD(n,m) = ﬁ(nA, ma) ,

for a fixed A, such that U = (N-1)°A. The constant U

has been previously defined and N corresponds to the size

DIPR PSP W AT SUE UL,
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Tp > U2 - U + Dl'
where
_ T4a aT

and Dl will be defined to be Tp/&. Under this assumption
ﬁ(x,u) can be expanded in a Fourier series, which is

truncated to yield,

K ™
h*(x,u) = ao(u) + El {ak(u)cos(%lkx)-kbk(u)sin(%— kx)}.

k P P

(5.84)

The ak(u)'s and bk(u)'s in (5-13), obtained in closed form,

are
/
= a - -
ao(u) = m (uz ul dz), (585&)
ey ¢ (e sinGe (uy=d))eos (i d) - L cin(w oul)}
u+a . akSln Wk u2 k. E k l ‘v
1,2
g (u) = Dy T (5.85b)
1 .
TE%ET . {Bksin(wk(uz-d))cos(wkd) il SLn(wkul)
d m 1 _ 2k
- =cos(g— u,) , 7 = ==
T D2 2 D2 T
k=1,2,
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Figure5.3: The impulse response of LSV system modeling
motion blur
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over these superfluous points. The discontinuity at

ta & %} , Will be slightly smoothed for better

results in the approximation. From the above, the function

to be approximated, ﬁ(x,u), is

3 up £ x < up Dy,
h(x,u) = Gf—_a- - w(xX)  uy-Dy < x 2 u,, (5.83)

0 elsewhere ,

k where

;_ u; =u - D1 ,

3 T+a aT

ii ‘ ® 2 a a

- D2 = (u2-u)/10 )

F w(x) is a Hanning window, given as

' w(x) = .5(1 - cos(éL (x-uz)).

3 2

3

@ The constant D1 will be defined later in this

section. The function, ﬂ(x,u), is plotted, for a fixed

.

but arbitrary value of u, in Figure 5.3.
The u variable will take values over a finite interval,

(0,U]; then, for any arbitrary but fixed u ¢ [0,U], we can

OII "'“"'_l

consider ﬁ(x,u) to be periodic in x for a sufficiently

e PR
[

large period, Tp'

......................




5.5 Examples of Applications

In this section, two examples are presented which illustrate
the application of the state-space model for the inverse
system to the restoration of a degraded image, where the
degradation is modeled by a LSV system describable by (5.10)
to (5.17). In section 5.5.1, the physical phenomencn
responsible for image degradation 1is motion blur while in

section 5.5.2 the degradation is due to a type of optical

aberration, referred to as coma.

5.5.1. Space-Variant Motion Blur

:
(] ‘
é Consider the one-dimensional motion [5.18)
b
u = g(x;t) = -ag%g a,a,u >0 (5.81)
te¢ [O0,T],

Using Sawchuk's analysis, this motion is modeled by a LSV

system whose impulse response is:

a T+a aT
AL e
h(x,u) = (5.82)
0 elsewhere ,

In order to obtain a 1-D state-space
model for this blurring, the impulse response in (5,82)

s will be approximated in degenerate form. Before carrying
out the approximation, it is important to note that the

{ state-space model is causal and, therefore, it will not

evaluate the impulse response, h(x,u), at points x < u;

this will be used to our advantage in extending h(x,u)




h(nl,nz;nl,nz) # 0 for all 0 < n,

i <N, i=1,2. (5.79)

5.4.2 Weakly Causal Case

The inverse of the system described in(5.74)-(5.75)

is easily shown to be:

z(ny.ny) = Ar(ny,ny) (2(n)-t,ny+q) + z(nq*r,n,-p)
*i - g(nl+r-t,n2+q-p)] + QI(nl,nz)y(nl,nz). (5.80a)
u(n,,n,) = ¢r(nq,n,y) (2(n;-t,ny+q) + z(ny+r,n,-p)

¢
p
&0 - _z_(nl+r-t,n2+q-p)] + QI(nl,nz)y(nl.nz), :(5.80b)

with initial conditions

z(tn+r,-qn-p) = 0 , z(-mn-t,pntq) =0 , n=0,1,... (5.80¢)

where A;(n;,ny), by(n;,ny) ¢;(ny,n,) and d;(ny,ny) have
been defined in (5.77).
The necessary and sufficient condition for the

existence of the state-space model, in (5.80) is,

gr(ny.ny) " bi(ny,ny) # 0 for all (n,,ny) ¢ C,

14

° : or, equivalently,

h(nl,nz;nl,nz) # 0 for all (nl,nz) € Cc
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z(n),-1) = 0, z(-1,ny) =0 for n;=0,1,...,N, i=1,2, (5.76c)
‘ where
Ap(nnp) = Tg-b(ny,ny) (e(n,nb(a).n) 17T elay,mg) (5.772)

and I, is the K-th order identity matrix,

F EI(HI’HZ) = h(nl»nz) [E(nl’nz)h(nl'nz)]-l’ (5.77b)
P
H e;(ny.ny) = - fg(nl.nz)g(nl.nz)l"l c(ny,ny),  (5.77c)
[ ]

d;(ng,my) = IC(nl.nz)p_(nl.nz)]'l- (5.77d)

It is important to note at this stage, that the state-space

F ‘o model of the inverse system, given in equatiomns (5,76) and

‘ (5.77), is based also on a three point recursiom. Therefore,
it will provide a very efficient deconvolution procedure.

Fi In addition to this, for a reasonably low order state-space

model, there will be no storage problem because the state-

A pe s "
Soa e

vector is only two dimensional and there is no need to

L J

ﬁ store it over the entire input mask.

) The state-space model, considered here, for the

3

o inverse system exists if and only if

: g(nl,nz)g(nl,nz) # 0 for 0 < n, < N, i=1,2, (5.78)
; or equivalently, by substituting (5.15) and (5.16) in (5.78)

and making use of (5.2), we have that the condition in (5.73)

is equivalent to

....................................
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From the above equations, we can see that the state-space
model in (5.74) and (5.75) preserves the three point recur-
sion. It is important to -emphasize that in this case
the recursion in (5.74a) does not dependvon the closest

past neighbors of the point currently under consideration.

5.4 State-Space Model for the Inverse System

In section 5.4.1, the state-space model for the inverse of
the system described in (5.10)-(5.17) is first given. In
section 5.4.2, the counterpart in the weakly causal case is

considered.

5.4.1 First Quadrant Quarter-Plane Case

Consider the state-space model of the first quadrant
quarter-plane discrete LSV system described in (5.10)-(5.17).

The state-space model of the inverse system, whose state-

vector, input and output at the point (nl,nz) are, respectively,

z(ny.n,), y(ny,n,) and u(nl,nz) is:
z(n,,n,) = A;(n;,n5) [2(n;-1,0,) + z(n;,n,-1) -
z(n;-1,0y-1)1 + b;(ny,ny)y(n;,n,) , (5.76a)
u(ny,ny) = ¢;(nq,ny) [2(ny-1,0,) + z(n;,ny-1) -

E(nl'l’nz"l)] + ‘d_..I(nl,nz)Y(nlynz) ’ (5.76b)

with initial conditions

....................
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where C is a constant and the regions I and II are clearly
defined in Figure 5:3.

' The impulse response h(xl,xz;rl,rz) for the coma
aberration in (5.92) is, in general, non-causal, but by
imposing some constraint on the radius RO in the pattern
of the impulse response ho(xl,xz) in (5.93) as shown in
Figure 5.5, it is possible to perform the deconvolution,
recursively. The restriction on RO corresponds to a
limitation in the amount of coma aberration to be tolerated,
which can be made very small depending on the quality of
the lemns.

In order to perform the deconvolution, the input plane
will be divided into its four quadrants and the deconvolution
will be carried out for each one of them. The final
reconstructed object is obtained by superimposing the four
resulting arrays. For this procedure to be valid, without
loss of generality, an object point outside Q1 should not
affect an image point on Ql' This coqdition is illustrated
in Figure 5.6, and it will be used to determine a bound for
RO. |

From Figure 5.6, the inequality d < ly| is sufficient

to guarantee that the object point (rl,rz) will not affect

any image point on Ql' Simple calculations enable one to
get the maximum allowable RO required to recursively restore

an (NxN) input array to be

Ry = (5.94)
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Figure 5.5: The shape of impulse response of LSV system
modeling coma aberration
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Figure 5.6:

R N A

Diagram to determine a maximum value of the
radius of the coma pattern
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As an example, a (31x31)-point original object u(nl,nz).
-15 < n; < 15, i=1,2, which is thé counterpart of the

(32x32) -point original object in Figure 5.4a was blurred by

the coma aberration. For this object size, N=31, and R =

omax

.065. The blurred image y(nl,nz), -15 < n; < 15, i=1,2
was obtained by performing the summation,
15 15 .

Y(nl,nz) = z
ml=-15 m2=-15

-15 < n; < 15, i=1,2

where

ﬁD(nl,nz;ml,mz) = h(nqa,n58;m;4,my4)
-15 <n; <15, -15 ¢ my < 15,
i=1,2

and
A =1/15

The resulting blurred image is shown in Figure5.7. In
order to implement the state-space model, the impulse res-
ponse, ﬁD(nl,nz;ml,mz), was exactly represented as a
degenerate sequence by means of the DFT of hD(nl,nz;ml,mz)
for each pair (ml,mz), -15 < m; < 15. This procedure is
explained in (5.21]. The symmetry of the impulse
response of the coma blurring was used in reducing the

amount of DFT's required for this representation.

A state-space model of the inverse system was obtained and
used in the deconvolution. The deconvolved image matched

exactly the original image.
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Figure 5.7: Image blurred by coma aberration
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5.6 Conclusions

Procedures for compensating for effects which degrade the
accuracy of remotely sensed datas by mathematically inverting
some of the degrading phenomenon are required in biomedical,
industrial, surveillance and earth and space applications.
Images to be restored are often degraded by a linear spatially
varying operation. Degradations due to motion blurring and
optical system distortions often require the imaging systems
to be analyzed by modeling the degradation as a linear shift-
variant operation. High speed digital computers have been
primarily responsible for the development of techniques
for image restoration of shift-invariant motion blur, but
counterparts of such techniques in the shift-variant case are
severely handicapped by the required space-time computational
complexity. Attention has been directed to the alleviation
of this shortcoming and the results arrived at are, first,
briefly summarized and then directions for research in the
immediate future are provided.

For any 2-D discrete first quadrant quarter-plane causal

linear shift-variant (LSV) system, whos impulse response is

a K-th order degenerate sequence a K-th order state-space
i model was obtained. This model is recursive and is based on
‘: a three-term recurrence formula relating any point in the
f state-space model to its three closest past points and the
; current input. The state-space model was extended in order
L to model 2-D discrete LSV systems with support on a causality
:A cone. Subsequently, the 2-D quarter-plane causal and weakly
8 causal discrete models were extended to the n-D (n > 2) case.
!
g
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The resulting state-space models are recursive and based on

a (Zn-l)-points recurrence formula, which for the causal

case used the (2%-1)-closest neighboring past points in
addition to the input in order to compute any current output
state. For the weakly causal case, the (2%-1) computed
points required are not, in general, the closest neighbors to
the present output, which is being computed. Conditions for
the existence of a 2-D state-space model for the inverse
system are readily derivable from the original one. Models
for the 2-D LSV system and its inverse can be used to perform
analysis and deconvolution problems very efficiently. This
can be substantiated from dervided expressions for space-time

computational complexities [5.21].

Examples of physically motivated applications making
use of the theoretical results developed have been worked
out. These applications include effects of 1-D LSV motion
blur and the blurring due to Seidel aberrations of a lems;
in particular, the 2-D LSV coma aberration was studied in
detail. The reconstruction of the original object from
the LSV blurred image was carried out successfully by means
of the state-space model for‘the inverse system. For the
construction of the LSV model, the impulse responses of
the blurring phenomena were approximated in degenerate form
via series expansions using orthogonal functions. For details

regarding this, see ([5.21].°°

........
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The possibility of using the state-space model of the
inverse system for the restoration of the original object
from a LSV blurred image in the presence of additive noise 1is
currently under investigation. A causal, discrete counterpart
of the integral equation in Phillips [5.22] was implemented,
and for variou~ signal-to-noise-ratios (SNR) the deconvolution
was performed. It is interesting to note that in this case,
there were no large oscillations and as the SNR increased the
difference between the original sequence and the deconvolved
one decreased. Also the deconvolution of motion blurred and
coma blurred images corrupted by noise was performed for
different SNR. The restored objects, for a SNR=100 or larger,
were easily recognized in the case of objects with well
defined edges, such as a white letter on a black background.
The reconstruction of the original object was very poor
in the case when the object did not have sharply defined edges

Since the state-space model developed works very effi-
ciently to deblur images affected by 2-D linear shift-
varying blurs, its use, in presence of noise needs to be
examined. An obvious approach would be to filter out the
additive noise, and, subsequently, obtain, recursively, the
restored object using the state-space model of the inverse
system, already developed. Specifically, let x(kl,kz) be

the blurred image with additive noise,

x(kl,kz) = s(kl,kz) + n(kl,kz) (5.95)

where 5(k1’k2) is the spatially-variant blurred image and

n(kl,kz) is the additive noise. We want to filter out
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n(kl,kz) or in other words we want a satisfactory estimate,
;(kl,kz), of the blurred image. From this obtained estimate,
;(kl,kz), the deconvolution can be implemented, recursively,
via the deveioped state-space model. Some assumptions are
necessary before n(kl,kz) may be filtered out to satisfactionm.
A stationary noise, {n(kl,kz)}, which is uncorrelated with
{s(kl,kz)} and having known mean as well as correlation may
be assumed. The sequence, {s(kl,kz)} originates from a spati-
ally blurred object and, therefore, it is inherently non-
stationary. We will assume that {s(kl,kz)} is nonstationary
in the mean and also in the autocorrelation. Under these
assumptions, we feel that a solution to the filtering
problem could be obtained and a possible approach is outlined.
It is possible to transform {x(kl,kz)} into an

approximately stationary process, {i(kl,kz)}, given by [5.231,

f(kl,kz) = E(kl,kz) + H(kl,kz) (5.96)
where {E(kl,kz)} and {ﬁ(kl,kz)} are stationary and uncorrelated
and the mean and correlation of {H(kl,kz)} are computable
from those of {n(kl,kz)}. From the process, {i(kl,kz)},

an estimate, g(kl'kz)’ of Ekkl,kz) is obtained. This is
possible to do via use of Wiener filtering theory. Next,

an inverse transformation to that employed in order to arrive
at (5.96) is applied to {é(kl,kz)} and an estimate é(kl,kz)
of the original image S(kl'kz) is obtained. It is pointed
out that if the noise is nonstationary, further assumptions
are necessary (like local stationarity) before a satisfactory

solution to the problem is expected.
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Linear Restoration of Bilinearly Distorted Image: Several

applications require restoration of bilinearly (a special
type of nonlinear map) distorted images. Some of these
applications and a procedure to restore bilinearly distorted
image in the presence of additive noise, by linear filtration
is considered in [5.24]. It is also known how 1-D bilinear
transformation (shift-invariant or special shift-variant) can
be computed by use of 2-D linear optical processors [5.25]. |
It has also been pointed out in [2, p. 219] that properties

of n-D bilinear systems can be inferred from the investigation

of similar properties in a 2n-D linear system. These inter-~
relations between a bilinear and a higher dimensional linear
system suggest the necessity of investigating into the
possibility of restoring bilinearly distorted images using
the developed state-space model (of appropriate spatial

dimension) for linear shift variant systems.
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g A (g(0)g(1).** . gN-IT (3.10)
hen, the bilinear system description in (1.1}, or (3.2), can be written as
Bx = g (3.11)

herefore, the image restoration problem of interest here requires the finding of the
onnegative vector f which satisfies (3.7), (3.8) and (3.11).

Fact 3.1 : Let Q("), Q(”), n=0,1,***N-1, B, f, and g be, respectively, as in (3.4), (3.5), (3.6),
3.3), and (3.10) and b("), n=0,1,*+°*N-1 and f, g be nonnegative. Define an Nx1 vector w,

rhose elements are given by,
w) = /@i (3.12)

nd aitso define an NxN matrix U

~

[ n(OT

u g [T | | (3.13)

h(NIT

L.
‘fis a solution of

Ut = w (3.14)

hen x obtained from f via (3.7) and (3.8) will be a solution of

Bx = g (3.15)
et the linear subspace R(BT) be defined as

R(BT) 4 {z: ?BTy, yeRN} (3.16)

vhere rN denotes the N-dimensional Euclidean space. Then, the projection, 8 of x on
(8T) will satisty '

< B;TX > = (@ =12 N (3.17)
Proof : (3.14) implies that

<nliTDt> = (),

. e




12

3. Image Restoration From Noncausal Bilinear Blurring

In this section, the problem of restoring an image which is blurred by the bilinear
system described by (1.1), will be discussed. The (NxN) nonnegative matrix, Q("), is, first
defined. '

q(n;0,0) q(n;0,1) L q(n;0,N-1)

al™ A laqm10)  qil1)  eee  gRiTN-T) n=0,1,+* *,N-1 (3.1)

q(n;N-1,0) gq(n;N-1,1) e e q(n;N-1,N-1)

Then, O("), n=0,1,**+ N-1, are symmetric matrices if y(m,.m,) in (1.2) is symmetric.
Assume that y(m,.m,) is symmetric [4, 6, 7, 13] throughout this section. With al™ in
{3.1), equation (1.1) can be rewritten by

gin) = ffaMe  n=0,1,4¢¢N=1 (3.2)
wheare
o= {H0)H), 0+ o fN-)]T (3.3)

if the system is completely coherent, then

aM . D(n)b(n)T' n=0,1,* * *,N-1 (3.4)
where
h(M = [h(n:0)h(n: 1), « < hN-1)]T,  n=0,1, ¢+ N-1 (3.5)

Let (A); denote the ith-row of A. Let,

(B)i A [(Q(i‘l))l'(oli"]))zlocc’(Q(i‘1))N]' i",Z."',N (36)

X = T (3.7)
and

x = 1000050+ 0o 3.9)

Then, using the usual Euclidean innerproduct notation, <°¢,*>, (3.2) is expresseible as.
g(n) = < (B)yeq". x >, n=0,1, ¢ N-1 (3.9) |

Let

B
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has been done in {17]. For a (31x31) image, R, < 0.0065 guarantees the occurrence of
the desired effect and for each segmented region, the support of hc(nl,n 2.M,.m,) is
obtained from:

he(ny.n,m; .m,) = (nonzero ., m, < n,andm, < n, (2.21)

0 , otherwise

Then, each segmented image is blurred bilinearly by using (2.13). Figure~5(a) shows the
original 31x31 image and Figure-5(b) shows the blurred image. To simulate the biurred
image, 4 in (2.19) has been chosen as 0.254. Also yz(ml,mz,ll,lz) in (1.2) is given by

Y,(m . m,% .2,) = sinc[(m1-21)/Nh]sinc[(m2-2,z)/Nh] (2.22)

where Np, is the maximum possible support width of hc(nl,nz;ml,mz) for any (n,.n,).
The system’s coherent impuise response is given by

h,(n,.nm; m,) = /h.(n,n;;m, m,) (2.23)

Each function has been chosen to ensure the nonnegativity of the resulting DIR. By
applying the algorithm in Figure-1 to each segmented output quadrant image and by
combining those results, the original image is recovered as in Figure-5(c).
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The recursive implementation analogous to (2.8}, (2.9) and (2.10) also can be obtained.
Since (2.13) characterizes a quarterplane 2-D discrete system, row-by-row recursion, i.e,
(n,.n,) - (n1+1,n2) + ¢+ =+ (N-1n,) - (0n,+1) » (Ln,+1) = oo, and the
column-by-column recursion are two of several possibilities for implementing the
recursion. The next equation provides the input/output description of 2-D discrete
bilinear system whose DIR has support in a nonsymmetric haif-plane on (ml,mz)-plane
or (2,.%,)-plane.

Ny N-1 M N-1

y(n,.n,) = E_‘1=0r§1zsoéx‘ogzaoqz(nl,nz;m1,mz,2l,lz)u(m‘l,mz)u(ll,lz) (2.17)
or.
?—1 n, ?-1 n,
y(n,.n,) = Z z Qa(n,.n,m  my 8,8 Julm, m)u(l,.L,) (2.18)

m,=0m,=0%,=0%,=0
(2.17) can be solved reacursively column-by-column, and (2.18) row-by-row.

To simulate the proposed algorithm, we synthesize a special type of noncausal bilinear
system by employing a coma type lens aberration as the system’'s coherent impulse
response. The coma aberration is described in [17, 23]. It will be briefly described here.

in the rectangular coordinate system, it is easy to explain this coma aberration by
segmenting the input support region into 4 quadrants as in Figure-3. And for each
segmented quadrant the index will be reordered the center point of the original input as
the origin, i.e., (0,0), of the each segmented image. In Figure-3, <m m,> denotes the
original index of (31x31) original image and (m,.m,) the new index for each segmented
part. The point spread function, h.(n ,n,;m,,m,) of the lens coma aberration is given
by [17]

he(n.ngmom,) = [1/{im 8)2+(m,8)2}h,(x,.x,) (2.19)
where A denotes the sampling distance and

2 2
x, 4 (mn +m,n,)/(m, “+m, %)

x, & (mn,-m,n )/(m, 2em,?)
holx,x;) = ‘(2(:)/#)(,.!*3)(2z . (x;.x,)€! (2.20)
CHX T3, T, xyxpell

and regions | and i are defined in Figure-4. From Figure-4, it is clear that by
constraining R, to be less than a certain value, it is possible to ensure that the
im~quadrant input, i=1,2,3.4, does not affect the jth-quadrant (i®j) output. This analysis
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Suppose the values for f(m), m=0,1,»+*+ n-1, are known; then, A, Bp and C,, can be
computed by using (2.5), (2.6) and (2.7). Hence, f(n) may be obtained by solving (2.12).
Since all the coefficients, A,, B, and C, in (2.12) are nonnegative, the equation (2.12) has
two real solutions, one of which is nonnegative and the other is negative. The
nonnegative solution is assigned to f(n) and the recursion is continued. The flowchart for
this is given in the Figure-1. In the Figure-1, the initialization %=-1 will not be necessary
in this case. After recursion is completed, the desired nonnegative output, f(m),
m=0,1,** ¢ N-1, is uniquely obtained.

Next, suppose that the elements of the DIR, are not ail nonnegative. Then, the
inequalities (2.3) and (2.4) may not hold. To proceed, it is assumed that q(0;0,0)>0. The
flowchart in Figure-2, when embedded appropriately in the hatched box of Figure-1
provides a brute-force implementation of the solution f(m), m=0,1,* <+ N-1, when this
solution exists.

Y
-

For a 2-D discrete bilinear system, the counterpart of the expression in (2.1) is

! n, n, n, n,

vin,.n,) = rz;‘1=0r§‘2,'092.120532“0%«'l,nz;ml,mz,sv.l.zz)u(ml,mz)u(z1,9.2) (2.13)
t ‘ Ps where all the notations are self-evident. The counterparts of (2.5), (2.6), {2.7) in this case
are given below.

An n, & Galnpngingngngng) (2.14)
n,-1n,-1

B Z n,.n,;m,m,,n,,n,)+*q,(n,.n,;n,..n, m, m,)u(m, m,)

n,.n, AmgOm,*O{qz(‘ 2M 1M gN N ,)*a, (0NN N, my My )lu(m, m,

n,=-1
1
+r’i.1=0{q (NN mn,.n N )+q,(n NN, n,.mn, ) u(mn,)

T

1 n,-1

f +’!1Z:_O{qz(n1,n 2N .MN,.0,)+q,(n,.n,.n 0,0, mlu(n,.m) (2.15)
E n,=-1n,=1n,=-1n,-1

g Cna,n, & V("v"z'%l_o%z,oﬁl_oézaoqz(“x'"z?mx'mz'zx'lz)u(m1'"‘2)“(9'1'9'2)

| n;=1n,=1n,-1

f —%l.og‘z_oi_o{qz(nl,n MM, 2.n,)+q,(n, 0,080, m m,y)lu(m, m,ju(ln,)

E n;=1n,=1n,-1

. -mx.og'z’o&.o{qz(nl,nz;ml,mz,n1,£)+q2(n1,n z;nl,z,m1,m2)}u(mx,m2)u(n1,2)

! n,=in, -1 n,-1

P -E‘\-O[E-Oq 2{nynmn, n,)u(ln 2)4-92._qu 2nnmn,n, Lun L)u(m.n,)

3 n,~1n, =1 n,-1

N -r)';"so[ixoqz(nl,nz;n1,m,9..nz)u(9.,nz)+&=0qz(n 1 Nn, .man Lu(n  2)u(n,.m)(2.16)
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2. Image Restoration From Causal Bilinear Blurring {Noise-Free Case)
An 1-D discrete causal bilinear system will be represented by,

n
o = & ‘O&Z’Oq(n,mL,mz)f(ml)f(mz). (2.1)

1
The case of nonnegative DIR will be considered first. Suppose that we are given g(n),
n=0,1,***N-1 and gq(nm m,) 0 < m,. m, <n n=01°**N-1, and these are
nonnegative. The nonnegative input f(m), m=0,1,** * ,N-1, is to be recovered. This can be

done by rewriting (2.1) as

TR T T TReL

Y

-1
I o) = amnnfin) + (3 {amm.opsa(ninmi}mltin)
y n-1 n-1

+ l_);‘1=0r2;‘2=0q(n,ml,mz)f(ml)f(mz). (2.2)

Since, for the noise-free case, q(n;m, m,) > 0 and f(m) > 0, therefore

—————r—
()

q(mn.n)f3(n) + IS:O{Q(n:m,n)+q(n:n,m)}f(m)lf(n) z 0 (2.3)

From (2.2) and (2.3), the inequality in (2.4) follows.

gn) - E- OE- SAmm MM )i(my) 2 0. (2.4)
i Qe "m0
{ Let,
; An A ag(ninn) (2.5)
o -
t B, 4 E {q(nmn)+q(nnm)}f(m) (2.6)
ch A c‘"’ - g(n) - 2' E' Ldmm m )fm ) ) 2.7)

Cs.\") can be obtained by implementing the following recursion.

o O =0  k=01,0vcn (2.8)
R - Ctk=1) o [gjo{q(n:m,k-l)+q(n;k-‘|,m)}f(m)]f(k-1)

3 + q(mk=1,k-1)t23(k=1), k=1,2,**+n (2.9)
. c = gn) - ¢ (2.10)

From (2.4), (2.5), (2.6) and (2.7)

A,b, 20 8, >0 ¢C, =0 (2.11)
‘.
S The expression (2.2) can be rewritten in terms of A, B, and C, by
-
a 2 _ .
;-. ALff(n) + BLf(n) Ch Q. (2.12)
[
e
b .
2
-
b - j
11:4-;4'" """""""""""""""" SN e e g L i ete SOT Y
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h(n;m) = { nonzero , m < n {(1.12)

0 . otherwise,

then it is easy to see that the system DIR will be of the form

q(n;m, m,) = { nonzero , m, < nandm, < n (1.13)

0 , Otherwise.

For the incoherent imaging system of patterns on the translucent scattering substrates,
the causality of the lens irradiance spread function and the substrate scattering function
will result in the system DIR of the form in (1.13). A physical realization of the causal
scattering substrate has not yet been reported. However, the example of the lens

-

irradiance spread function of the type in (1.12) can be formed as we shall see in section 2
by considering the lens coma aberration [17]. Since the irradiance spread function,
hc(n:m), of the lens is related to the system’s coherent impulsa response, from(1.4), by

he(mim) = |h(mm)|2, (1.14)

one can say that the support of h(n;m) is the same as that of hc(n;m).

i ‘ ° In this paper, we will mainly study the original image intensity restoration from the
i image intensity blurred by the system described by (1.1). For the restoration of the
; bilinearly blurred images, nonlinear {18, 19] as well as linear methods [12, 20, 21, 22] have
F been considered. The linear methods used for the restoration of a bilinearly blurred
i image are successful in the incoherent case, but the restoration becomaes

poor [18, 20, 21, 22] as the blurring system approaches the completely coherent case.
5 The nonlinear method [19] has been successfully applied to restore only those images
r which are of low contrast following blurring by a coherent system.

f

F A procedure to restore images blurred by completely coherent systems is described in
| section 3. In several applications including the imaging system of patterns on the
p

translucent scattering substrate [13] and a portion of the diffraction-limited imaging

system [71 the characterizing DIR is nonnegative. Except in section 2 this nonnegativity
‘ property of the DIR is assumed to hold. In section 2, a recursive scheme for restoring a
: class of bilinearly blurred images is developed. In section 3, a technique for restoring a
wider class of bilinearly blurred images is considered. In section 4, the effect on the

quality of restoration due to the presence of additive noise is analysed.
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N-1
gn) = L _ - Intn;m){¥jem)]* (1.4)

where g(n) and |f(m)|? represent, respectively, the image intensity at n and the object
intensity at m. For the completely coherent case, in which the field’s coherence function
is given by [4, 6]

Yy(m,m,) = 1, forallm, and m, (1.5)
we have
¥ 2
g(n) = | h(n;m)f(m)} *. (1.6)
m=0

The region falling between the two extremes of complete incoherence and complete
coherence is the region of partial coherence and the partially coherent system is
described by (1.1) and (1.2). When the foflowing condition holids,

Yy(m,.m,) = Y'(mz.ml) (1.7)

the field’s coherence function is said to be symmetric and in that case the DIR

]

&
be

b

g(n;m, m,) is also symmetric. This implies that,

N -

- q(iim;.m,) = q (n:m,m,). (1.8)
. ® When (1.8) holds and the input sequence is real, (1.1) is a hermitian form and, therefore,

- can be written as

f -1 N-1

" n) = g Ig Relgq(n;m ,.m ., )if(m, )f(m,). 1.9

g oM = L Lok =gRelamim mltm fm,) (1.9)

F Hence, the imaginary part of the system’'s DIR doesn’t contribute to the image formation.

In the imaging system of patterns on translucent scattering substrates {13}, the DIR can
be given by

\d a(mm .m,) = [1/72IM(m.m,)S(n;m, }+M(m ,.m)S(n:m, )] (1.10)

3 where M(m .m,) represents the substrate scattering function at surface point m,

-

DulLg

resuiting from a small illumination spot of unit power at surface point m, and S(n;m) is

- .
».' the lens irradiance spread function. From (1.10), we have

]

. q(n;m,.m,) = g(n:m,m,) (1.11)
- and q(n;m, .m,) always takes the real, positive value {13].

¢

fe

_* For the partially coherent imaging system, if the system’s coherent impulse response
N has the foilowing support

0




1. Introduction

A 1-D continuous bilinear transformation arises in the second order term of the Volterra
series representations of the nonlinear system {1, 2, 3, 4]. In the discrete domain, the 1-D
bilinear transformation with the finite support range input can be described as

N-1
0m ,=0
where {g(n)} and {f(m)} are, respectively, the output and input sequences, assumed real,

-1
g(n) = g‘ i} q(r;m .M )fm  )Hm ;) (1.1
1

q(n;m,,mz) reprasents the system response at the output coordinate n due to two
impuises at the input coordinates m=m, and m=m,, and N is the size of the input

k support.

Recently, in the optical image processing area, this bilinear transformation has been
studied extensively to analyze the optical imaging system. These areas include the
partially coherent imaging system [4, 5, 6, 7, 8, 9], the magnification type X-ray imaging
system [10, 11, 12], and the incoherent imaging patterns on translucent scattering
substrates [13]. Ref{4] describes the general properties of the optical bilinear
transformation in detail. The relationship between the 1-D bilinear transformation and the

2-D linear transformation has been studied in [4, 14, 15, 16}

In the partially coherent imaging system and the projection type imaging
system [10, 11], the double impuise response (DIR), q{n:m,,m,), of equation (1.1) can be
reprasented by

L
{ g(n;m . m,) = h {nm,)h(nm,)y(m, m,) (1.2)
C,
- where h*(n:m) denotes the complex conjugate of h(n;m), h(n;m} represents the system’s
'. coherent impulse response at n due to the impulse at m and y(m, m,) is the field’s
: coherence function. The term y(m,.m,) represents the correlation-like coefficient
g between the object intensities at m, and m,. The derivation of the expraession (1.2) and
- the further detailed informations about y(m,,m,) can be obtained in [6, 7, 8] and various
'. other related materials.
; For the completely incoherent case, the light from each point in the object is assumed
F' to be statistically independent of light from every other point [6]. Therefore, in this
-
" case [4, 6],
@
[ y(m,m,) = { 1, m=m, (1.3)
b
5 0 . otherwise
X and, from (1.1),(1.2) and (1.3), we obtain
¢ :




MBI ount i S s s SOSEc RN Sebn oset Eugc el 00 8 s sl Snouc SEL - ROl e -agmntadu-n il sie A -eESER e

BILINEARLY BLURRED IMAGE RESTORATION

RN
-
®

',v—m,/. Q

e,

r——p——r
e

ret o raflat

DU S IR W A




N 0 20 40 oy o
LA o

Y

T—— Y

e
[ T

. V.v‘vj.—fﬁ‘fv ”

AR R SN N

14

On squaring both sides of the preceding equation, and then using successively (3.12), (3.4)
and (3.11), one obtains

- fTali="¢
= <(B); x> (3.18)

Therefore, if f is a solution of (3.14), then g is a solution of (3.15).

To prove (3.17), x is decomposed as,

X = X + X (3.19)
where geR(BT) and gsN(B), where N(B) is defined as,
N2
N(B) A {y: By=Q yeR } (3.20)

2
since R(BT) in (3.16) and N(B) ara orthogonal complementary spaces with respect to RN S,
Premultiplying B on both sides of (3.19),

Bx = Bx + Bx = Bx (3.21)
But, by (3.15) the left~hand side is g. Hence,
Bx = g (3.22)

and 2 satisfies (3.17).

The above Fact says that if the each row of the matrix B satisfies (3.4), (3.5) and (3.6),

then by forming a nonnegative vector w from g as in (3.12) and solving (3.14) for f, one
can restura@ the original image. When the nonnegative vector w is formed by (3.12), there

are ZN possible ways to set the value (w); from (g);, i=1.2,** * N. But the negative sign of
any elements in w will violate the necessary condition for f to be nonnegative in (3.14).
Hence, w may be formed uniquely from g without violating the necessary condition that f
bé nonnega.tive, by using (3.12). If _!_1“), i=0,1,** ¢ N-1, are linearly independent, the
nonnegative solution f will be unique. For the completely coherent case, the matrix B in
(3.11) satisfies the condition in the Fact 3.1 by (1.2), (1.5) and (3.1). Therefore, one can
exactly recover the original image for this case provided that r_1(i), i=0,1,¢**,N~-1, are
linearly independant.

on R(BT) of x is known, where B can be

x>

Due to the Fact 3.1, if the projection,
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represented by (3.4), (3.5) and (3.6), then the null space component, gof X can be obtained
from '_i so that x can satisfy (3.7) and (3.8). However, for the partiaily coherent system,
the matrix B generally does not satisfy the conditions in (3.4), (3.5) and (3.6). The Fact 3.1
will be adapted for use in the partially coherent case, by approximating the basis of R(BT)
to the form in (3.4), (3.5) and (3.6). To do this a few terminologies and well-known
Lemmas will be introduced.

Definition 3.1 : The Euclidean matrix norm of the matrix D will be denoted by |[[D|| and
defined as

ol 4 /vrioTo) (3.23)
where TrA denotes the trace of the square matrix A.
Definition 3.2 : Let S be the set of the matrices satisfying
S = {D: D=dd', derNj (3.24)

Then, we mean by "the best approximation of a matrix Q on'S" the matrix D" which
satisfies

»
Q-0 = min [iQ-D 3.25
lla-0%) = minjia-0| (3.25)
The above two definitions can be expiained in other way. Let
a = (Q),.(Q),.*(QplT (3.26)
e = (D), .(D),.*~.OIT (3.27)

where D=g<_jT, geRN. Then, the best approximation of a matrix Q on S is seeking the
vector 9_* which has the form in (3.27) and minimizing the usual Euclidean vector norm of
(a-e].

Definition 3.3 : A matrix E is said to be idempotent if E?=E.

The following Lemma 3.1 is well-known [26] and its proof will be omirtted.

Lemma 3.1 : Let Q be a NxN symmetric matrix with distinct real eigenvalyes, Ax,- . Ar

Then, the idempotents E;, i=1,2,* * *.r having the properties
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vy T,
[

r

r
I Q= I AE

exist, where Iy denotes the NxN identity matrix. Moreover, E;, i=1,2,+ ¢ *.r are unique and
Ei=‘_’i‘_’iT' where y; is the eigenvector of Q corresponding to };, i=1,2,¢ ..

Lemma 3.2 : If E is idempotent, rank E = Tr E.

Proof : Since E is invariant under the square operation, the eigenvalues of E are 1 and 0.
* Hence, the muitiplicity of the 1 is the rank of E. But the sum of the eigenvalues of any
F matrix is the trace of the matrix. Therefore, Tr E = rank E.

Then, we state the Theorem 3.1 and present its proof.

Theorem 3.1 : Let S be the set as in (3.24). Then, the best approximation, D*, of a
symmetric nonnegative NxN matrix Q on S is given by

D" = A,E, = A,v,v,’ (3.28)

where Al and v, are, respectively, the dominant eigenvalue and the dominant
eigenvector of the matrix Q and E, denotes the dominant eigenspace of Q

Proof : Suppose the rank of Q be r. Let the positive eigenvalues of Q be ordered in
such a way that

M2 A2 0t 2 X | (3.29)
where p is the number of the positive eigenvalue, and the negative eigenvalues in such a
way that

Ape12 Ape22 02 Ay (3.30)
Then,

Appq=oco=Ap=0 (3.31)

Now, suppose that Vi denote the orthonormalized eigenvectors of Q corresponding to Ai

i=12,**+,N. Then, v ,*** vy form an orthonormal basis of RN Let d be the vector
which minimizes

la-adT| (3.32)

Then, d can be expressed as a linear combination of v;, i=1,2,*** N.

. . T BN P SR S E P R S R o o -
PRSI “a e T et . s e g T e T e C et TR Lt ., - Lo s
PERIE Sl Call- SO WL W PPN A AWPRE T WL W0 W S 2 W YR U WP WP URIP I I w U, PR WO R S U Y .Y Al 41




>y

17

N
d = L _av
= i=1 =t

Now,

la-ddT? = Tri(Q-dd")T(Q-ad")]

= Tra? - TrQ@d")] - TrigdNal + TridaT12.

Since

TdQ@d")] = TriddNal

la-ddT|? = Tr@? - 2TrQ(ddT)] + Tr(ddT)Z.
By the Lemma 3.1,
2 L 2 s 2
TrQ = Tr[_Z XlE‘] = Tr[_Z )\i Ei].
i=1 i=1
Hence, by the Lemma 3.2,
2 L 2 L 2
TrQc = X )‘i TrE; = z )‘i
i=1 i=1
For the second term in (3.34),

Tria(dd )] = Tr(Z AT )(z Y )(z 2K )
r
= TH(E 1liaiyi)(g=1uk\_lkT)

- :£1g=1)‘i°i°kTr[‘_’i!kT]
Since
Triviv, 1 = vy =( 1, i=k,
0. otherwise,
Q@™ = E Aoy
For the third term in (3.34),

Tr(ddT)z = Tr[('g avl)('g v )(2‘. ak_k)(z GQ,VR. )]

N
- ;2 Vol
?.1?__1%,1%0'] O'Q.Tr[!l!l ]

? I ala;?
|=1|=1i i

(3.33)

(3.34)

(3.35)

{3.36)

R




T T T T T Y e e e T T T e T T Y T Y T W Wt w T~ g~ = =

18

N
- (2,4h% (3.37)
By substituting (3.35), (3.36) and (3.37) into (3.34), one obtains

. N
“Q_ggT"_Z = :i:..]()‘i-ciz)z + [\g )\i" + ‘g Z ‘szakz("‘Sjk)]

i=r+1 j=1k=
Let
(¢
e, A 5:1“‘““‘2)2 20 (3.38)
N » N 2 2
€, 4 i}:=r+1ai + ﬁﬂgﬂaj o, “(1 ‘Sik) >0 (3.39)
Then,
la-dd"|? = ¢, + €, (3.40)

€, can be rewritten by

- . 212 s 242
€, = ?=1()\i @4 )¢ o+ iz-pﬂ()‘i Q; )< (3.41)
Let
a = (o, 2a,% 0y 20 (3.42)

By varying ¢ from [0,0,**+.0l7, one can set the a° which minimizes €,+€,. Starting
trom [0,0,+++,01", ¢, is nondecreasing function of ¢ as llalf increases. Howaver, g, is
decreasing monotonically as |jal] increases from [0,0, ** «,017 until a reaches

a = [XI'XZ'. . o'lp'o'. '.,O]T

Then, €, is increasing monotonicaily as [|af| increases. Based on these facts, one can
-

conclude that the optimal @ minimizing no-gng exists within the region formed by

IO'OI. * ‘ID]T and [x llk zl. M .Ikplolo'. ¢ .IO]T'

Suppose g“)sfk R «01". Then,
R L

Let
a@ = 02,0017,

Then,
(eye @ = £ it

By checking in this way, one obtains

........... .
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r
(e, +e, 1K = iglxiz-xk’, k=1,2.++*p.

Hence, so far, 9_(1) is attained as the minimum. Now, let 9(1,2) = U‘x')‘z-' . ',OIT Then

r
CRIMLLE iaﬁiz")‘x Tex g fe2n
Since

A, < A,

le,+e, 12 > [e,+¢, 1.
L’ For
' g(k.f.) = [0,0,°*°,01,.0.°**01,0,°° «ol". 1< ki< p
[exﬁ:z](k.l) = :é1)‘i2_()\k2+x22)+2)‘kxl 2{514.52](1)-
For g(k.l.m). the similar argument can be applied. By cortinuing these procedures until

g = D\Ageeenp00e0

{
; is reached, one can show that

[ Qe (e, +€, X" = minfa-gdTj2.

Therefore,

‘ a, = /A|, a,=ay=ccc=q\=0 (3.43)

will give the optimal vector d minimizing [|Q-dd’|l. But,
~ T e (T v WKV, 1) = AE
I dd (VA N A Y ) 151
Hence, the Theorem 3.1 has been proved.
The error resulted from the above approximation is given by
r
la-gall = Z A? (3.44)

By applying the Theorem 3.1 to Qll), i=0,1,++« N-1in (3.1), one will get Q1) i=0,1,¢ ¢+
N-1 which is nonnegative due to the Perron-Frobenius Theorem [24]). That is, the
nonnegativity of the system matrix é which is the approximate version of B in (3.11) is

maintained, while the each row of the matrix 8 satisfies the conditions (3.4), {3.5) and
(3.6) in the Fact 3.1.
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By combining the Fact 3.1 and the Theorem 3.1, the image restoration algorithm from
the partially coherent system can be obtained as follows:

Step 1) Obtain Nx1 vectors di. i=0,1,* ¢ ¢ N-1, by
4 = Niv, (3.45)

where )‘“ and v;, denote, respectively, the dominant eigenvalue and eigenvector of Q(i).
Form N2x1 vectors g;, i=0,1,** *,N-1, by

o = (o) 11(0(‘)) 2t "(D(i))N]T (3.46)

o) = g4.T. (3.47)
Step 2) Obtain the minimum norm solution, g of (3.11).

Step 3) Obtain Nx1 vector w by

(W); ={ /<ei_, X> . <g_, x> >0, i=12,°+*N. (3.48)

0 , otherwise
Lo Step 4) Solve NxN linear system Uf=w for f, where
u -] d,7 (3.49)
g,
T
dn-1
L J

Step 5) If the solution vector f has negative element, make it zero. Denote it 1:*. Then,
f_* is the approximate solution.

By applying the above aigorithm, one will have the squarred error of
-1 ; -1 N
¥ gt Tale12 = ¥ g2 a3 (3.50)
i=Q0 - - i=0 j=1 ==

h

where >‘ii is the jth eigenvalue of Q(i) and vij is the jt eigenvector of ald).

This error resuits from approximation of the range space of BT by a space satisfying

(3.4), (3.5) and (3.6). Figure-6 will help understanding their relationships. In Figure-6, the
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matrix E denotes the matrix resuiting from the approximation of the matrix B in (3.11) by
applying the Theorem 3.1. The dotted curve represents the nonlinear space which
consists of the vector having the form defined in (3.7) and (3.8). Then, solving Uf=w in
the step 4) will correspond to seek a vector x on the dotted curve so that the projection
of x on R(ET) be OB. But, the true soiution OD is on the intersection of AD, which
represents the set of all (least squares) solution vectors of (3.11), and the dotted curve. it
the true projection of 0D on R(ET), that is, &, is given, the true solution OD can easily
be obtained. For the completely coherent case or the completely incoherent case, R(BT)
coincides with R(ET). Hence, the true projection OC can be obtained only by computing
the minimum norm solfution.

The innerproduct operation in the step 3) includes the projection operation of OA on
R(ET), that is, obtaining 0B. This step results in the error because the true projection of
0D on R(ET) is OC. The reason why the innerproduct operation in step 3) includes the
projection operation is following.

The projection of 0OA on R(ET) is represented by
o8 = ETE)0A)

since ete is idempotent and the projection operator on R(ET) {25]. Suppose, now we
want to compute the value (E)(BE) to establish the system equation in the form of E)-<-§
which is the approximated version of Bx=g. Then,

(€)08) = ENETENDA) = (E)OA)

since EE+E=E (258]. Since (E)(-OE) represents the innerproduct operation in step 3), this
step includes the orthogonal projection operation on R(ET).

One more thing to be noted is the possible negative values resulting from the

innerproduct operations in (3.48). In the proof of the Fact 3.1, the innerproduct result of
(3.18) never becomes negative because

< (B x > =< (B x > = (<hlild>1?2 >0

But, for the partially coherent case, since R(BT) does not exactly coincide with R(ET), the

first equality in the above expression doesn’t hold. That is,

< E)p % >vw< By x>+ < Eg x>
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since gmay contain the component belonging to R(ET). Hence, if the error in (3.43) is
sufficiently small, then gcan be said to belong to N(E). Hence, the innerproduct values in
step 3) have to be nonnegative.

The 2-D bilinear system representation corresponding to (1.1) is given by
(n..n,) I§-1 -1 lg-l 1%1-1
n,, =
iMRal = 5 -om,=08,=01,=0

Initially the following form of the 2-D DIR is considered.

q,(n,.n,;m L /m 2% %,)u(m . m Ju(2.%,). (3.51)

g (n,.nm .m,.2,.8,) = an;:m,.L,)a(n,:m,.2,) (3.52)

In the Kdhier illumination system [7] with an incoherent square source, the 2-D field’s
coherence function is of the form,

Y,(m;.m,%,.2,) = y(m,.2,)y(m,.%,) (3.53)

where y(m,2) = C1°sinc[Cz'(m-2)l and C, and C, are constants. It is well-known (71
that the Fraunhofer diffraction pattern for a square aperture regsuits in a product separable
form of the coherent irmnpuise response, i.e., the 2-D counterpart of h(n;m) in (1.2) is of
the form,

h,(n,.n 2;m,.m,) = h(n .m,)h(n,;m,) (3.54)

where h(n;m) = C,*sinc[C, *(n-m)] and C, and C, are constants. Hence the optical
microscopic imaging system of the square incoherent source will have a DIR uf the form
in (3.52).

When the 2-D DIR is as in (3.52), (3.51) can be rewritten as

-1 N-1 N-1 N-1
z )

m 1=0mz=021=022=0

2

y(n,.n,) = q(n,.m .2, )a(n,.m,. % Ju(m . m,ju(l,.2,)

?-1 N1 (n,,m,,2 )l§-1 E‘-’ (n,.m_ 2, )Jum, m_ ju(®,.2,)
= ' . . , u . .
mz=0E2=0q L ml=051.1=0q T 1 b2

- g::aogj_oq(n,;mz,zz)w(nl;mzzz) (3.55)
where
w(ngmaL,) 4 DA an sm L2 Ju(my mu(L, ). (3.56)
m,=0%,=0
The minimum norm solution, Q(nl;mz,ﬂ.z), n,=0,1,***N-1, can be obtained via the
application of step 2) in the 1-D aigorithm. Define,

A e ol ot E AP R A S AT IR0 WL W ST MDY A M0 S A NI S IR S N S I T U S S Sl S PPN S SIS PN DN T




23

R(ET)

R(BT)

Figure - 6 Range Space Approximation
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r
q(n,.0.0) a(n,.01) =*++ q(n,0N-1)

alP2) A lain,:1.0) an,i11) eee q(n,1N-1) n,=0,1,%¢*N-1 (3.57)

Lq(nz:N-LO)q(n 2 N=1,1)e e q(n,:N-1,N-1)

Then, as in (3.45), by obtaining the dominant eigensystem of Q("z), the Nx1 vectors gnz,
n,=0.1,°¢+N-1, are obtained. For the fixed value of n, y(n,.n,) can be obtained, from
gnz and w(n,;;m,%,). by
g = 20 ¥ dinmodin,in e sm .2 ) (3.58)
m,=08 ,=0

th

where d(n;m) is the m" -element value of the vector d,. By substituting (3.56) for

w(n,;m,.%,), (3.58) can be rewritten as, for n, =0,1,* * * ,N-1,

~ lg-l I§-1 . N-1 N-1 ) _
y(n,.n,) = m1=-02,laoqm"ml'l1)512-0}!:.2*0(“"2"“ 2)d(n i )u(m  .m,)u(lL,.%,§3.59)
Let
4T dtn
z(m,.n,) A d(n :m,)u(m,.m,). (3.60)
m,=0
Then, (3.59) can be rewritten as,
L) ?‘1 -1
y(n,.n,) = a(n,;m.L,)z(m,.n,)z(L,.n,). (3.61)
m,=0%,=0

y(n,.n,) is given in (3.58) and q(n,.m, .%,) is also known. Hence, (3.61) is the 1-D
bilinear expression for the fixed value of n, n,=0,1,°¢+N-1. By applying the 1-D
aigorithm to (3.61) for each value of n,, n,=0,1,***N-1, 2(M;.N,) M, =01, N-1, is
obtained. Then, u(m, .m,) can be solved for in (3.60). The 2-D algorithm with the
product separable form DIR is shown on Figure-7.

The algorithm in Figure-7 is implemented with
h,(n,.nym m,) = { sinc[(n, -m )/Nplsincl(n ,-m ,)/Np ) [nj-mj|<N;, =12 (3562)
0 . otherwise
where sincx=[sin(mx)]/(nx), and
Y(m,m,2,.2,) =1 forall m, m, 2, .2,. (3.63)

Hence, Figure~8(b) shows the image blurred by the completely coherent optical system
with N, =4 from the 31x31 original image in Figure-8(a). By applying the algorithm in
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Figure-7, the image shown in Figure-8(c) has been obtained. The algorithm resuits in the
exact image restoration. For the partiailly coherent image restoration, the image in
Figure-9(a) has been biurred by the system with h,(n;.ny;im, .m,) in (3.62) and

Ya(m.my. 2 .%,) = sincl(m, -%,)/N Isincl(m,-2,)/N ] (3.64)

The blurred image is shown on Figure-8(b). N, has been chosen as 19. The restored
image in Figure-9(c) retains a little error since the blurring system belongs to the partially
coherent system close to the completely coherent case.
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Obtain Nx1 vectors d,; . n,=0,1,+++N-1, by
- z .
Xn_ 1Vn.1
Sn, = n,1¥n,1
where }‘“21 and ¥n,1 2re the dominant

eigenvalue and eigenvector of Q{f2)

1 [

Obtain the minimu i w(n
m norm solution, w(nl,mz,lz), of

yinng = & ¥
1Nz m23012300(nz;m2,22)w(nl;mz,ﬂ.z)

Compute

A N-1 l§-1 ~
y(nygn,) = d(n,;m,)d(n ;% ,)w(nim,.L,)
m,=02,=0
where d(n;m) is the mtN-element value of dn

1A

Obtain z(m.n,) from
saing = 50 ¥ qnimzm a2, 0 y)
yingng) = o my Ly )2im g .n g 2t n,
m1=02,1-0

by applyiﬁg step 2) through step 5) of 1-D algorithm.

Solve for u(n,.n,)
2(n ) 2_1 d(n,.;m,)u( )
Ny = _d(ny; u(n,.m
m,=0 2 1

No Yes

"1""1"1 1 n1=N-1

Figure-7. 2-D Product Separable Form Algorithm

EXIT




27

TewY TURWTYewe
TUTVEWSWER t cccocescnn TEWR e+ oo ose0e0oe+ TUTHNNTWES
TETTTWRN TR~ ccccsc ot oe W+ voeeseees s TUUNTUUWEY
L TR TR TN WWE e+ 04000000 s UUNUTUUUNNY
TETUTWUTOR s s cov oo - WTUAEG -+ se o 2.0 oo s AVWWUUWOWS
TETTNTEEOR s s e s occsvee cecerscrese s TUTRRRERYY
TEYTUEOURE R cccsvesboe WEeeocoesor s+ PUNHWETENY
TOTEUTEWEN+ s cocosvoe ceeec v cANENEWEUYE
L DRSO *scte e ress . TRURNEWR RN
TOTOUECWEY ¢ ccsessonce WWWrerveesosse s THUNTOWENE
TOOTUNEVER s coevcscnoa cess et NETHEEEWEN
TUTTOWTUE + coccvcosscce

WWEseseovecess s NUNHEUNUNS
i iy DT T T PP secsersee e cUNSRENEEY

m.ooo.ooo.....o...o........o..o...ooo.-..oom
m.oo.oooo-...o..ooo.o...ooooo.o.o.ouo~...oom
mooo.--ooo..oo.oooo.....oooo.o..ooooo..oo..m
m.-oooooooooooooooooo.'ooooooooooooooo..o..m
L PR Y LAAS R AL DX E R Y Y =
VTTTETTWIR e v+ ¢+ +00000ese00s00sssassstas vessrrscee s cuNTERTRENE

-
=

(a) Original Image

ann
USRNSSRk KL IERREAN
VUGS K KM s 2 sMMERR
CUDTEEEPSS L2 1 s 1 ¢ 5 1 s 2 2R NGUNWETOWTEWEWS
BTSSR AW e o - ¢ SwWwa A s aTTESUTEWEWERS &

ANRNARRNNESTETTVNWEWS
RAXTEIZXNKSENUEWTWEES
LR LI RLTIRYTL )
LERRNRERSLY L, ]
.. B aWWE R B EwWTwen

SEUETDS S 8 Swws «
DEURRSE & 8 Bww e v

. MMt A NSUTRVEWHREES 8§ 1Mk
L. *S00ORANNBANNANNNNERRS0D .

VOWTWES ¢4 Ewwe 5 S wiwd A § S TWNETETTUWR S & L SWAWE N & 8T
UG ¢ 8 Sww e - - LA A & S UTTETTTEEWYS & .
TPTTUDS S A Awwe ¢ .
IS ¢ 6 S wwe B .
TN € & Avwe s L3
-
-
.

GRS EARWN e e . . - - 10 ] [ MMOSAREANENNASESMM] | 35
USSR awWwe e cr e ! ] QOMMAANMAVWMMOS ] | oo - -
DUTTUNE &0 Swe crcctaesscesnttnPerer s

(b) Blurred Image

cesessos s gUWEWERNWWWY
seesessees e sUBEEERWEN

TETYREREWEc e s sesccsos
L LR TR TR

TETEWSTRWEC s se e s s cen P R . ]
[ LR PR YR seveces s gUTTEWEWEN
TETTTRRTERS e s s s e s R Y, ]
[ TR Y R P s . ]

[ DT T T Pes s oo s PUVEYWTUES
[ LR RN * 000000 cBUPERNREEES
TSP TUTERE s ee e st cc e ® s e e WETETEVETY
ENWTTUERRS s s v s e st s se e esees o s TUTEUNWYNS
YOTUREPEEE s ccccceso e see e oe e s UNUNRWWEEY
VECTTETTUU s e s s s ece s L R . . . ]
DOUVENTUNEC+ 0000000000000t 000tstetsrsrsaetersvsoss s + PUNTUNTEWE
TN THTTHUEC ¢ 0 0000000000000 00000,090000000ssees0o0ssss s TTNIUNTWEY
CUNTHENIREE® ¢ ¢ ¢ ¢ 0 $ 0093000030302 040349020vtssseess e+ TUTNTWWIWES
DITTEUUWEN S0 0 004 004020000000+ 90000s000avoetsssss st s TUNENNERWS
TROVOUNEE* $ 00 ¢ 0000020900000 0t0sscssctscsssssssssse s TUUNTWNETWY
PENTUUTWTE® ¢ 0 ¢+ 00 000000002002t 00sstscssstoscseseses s TNBUNWINWE

(c) Restcred Image

Completely Coherent Image Restoration Simulation
(31x31 Image, 4)

Figure - 8.




AD-A158 973 SHIFT-VRRIHIT MULTIDINENSIONAL SYSTEMSCU) PITTSIURBH
UNIY PA DEPT OF ELECTRICAL ENG!NEERING N K BOS
29 MAY 85 AFOSR-TR-83-0724 AFOSR-83-00.

UNCLASSIFIED

Fuven
one

F/G 12/4

272




AR A IRl e e A Sea e b b B e e b
| ‘ ) A . ) ' N M L. e v -

e £ i

- um

T
[y [ENTT

MICROCOPY RESOLUTION TEST CHART
. @ra, 3¢ STANCARCS - 963




cee s seee s PUTHEREDEE
eccccccee e .gUTNEREES
ssese e e cPUENSWREEY
IE R R TRTR PRy = - .
IR TR PR RPN~ e
e sss e cguTTEEREYE
s0ees 0000 gUTHETEETS
sscc s s gUNNREEERY
secsece s cguEHUROIRWS
sseeseess s sWNTHERREYE
sss00000e 00 cgETIEEERWS
LR R R R | ]
9000000000000 0000 e rTUNUNEWNNS
ees00cse000es00 e o PRUNTEWEYY
LR Y T R R R R L™ = = e
LA R Y LR P T R R RRY = — -
LX T T TV cecsesesece LR P Y R -
D L T Y R R R = e

(AR E R RN NN

(a) Original Image

(b) Blurred Image

CUTTYWUOWE s tsscescaar e
TOUTYWDUWR 1 ¢ seceens -
TTNEGTEWN e et s cosc e

A ndbededeae o LEXZANE § T XL N
L TR £ 3 )
WO TUWPUARcccog oo

WTTTRSANR- - - -1 00 AT AYTETRTETER A AW N
TOCWEYTUNEs rs s eeve e
TUTTTURWIR s ceosse v 1 &
L g TR Y PR PPy
L IRERRTPYYNE]
WUVTEYTRWE ¢ ¢ IR R TR
i as . IEXET FRNT TRINEY T EE N NERNEE LY T R
L 1 TR " | 1 XX XN YE] [E% 43
Ve sTYDEND e [ Joenp c.am
L] veesse
TEVTTEOUTN s s s e o 0o
Laaaay o DI RTE T 9010000000000 00000

. {c) Restored Image

Figure = 9. Partially Coherent Image Restoretion Simulaticn

(31x31 Image, N, = 4, N, = 19)




29

4. Image Restoration From Noise Added 8lurred Image

In this section the original image restoration from the noise added image following
bilinear blurring in (2.1) with nonnegative DIR will be considered. The blurred image with
additive noise can be described by

n
ogn) = & l.o,%,z,oq‘";mx'"‘z’f""l’f‘"‘ﬁ + v(n) (4.1)

where v(n) is a zero mean white gaussian noise. The biiinear blurring in (4.1) can be
recovered by applying the algorithm in Figure-1. But due to the noise effect the
nonnegativity condition in (2.4) may not be satisfied. Then, solving (2.12) recursively
might resuit in two negative solutions, or two complex solutions in addition to a
nonnegative solution with a negative one. The algorithm in Figure-1 will be adapted for
use in this case.

Suppose that nonnegative values for f(0), f(1),* * », f(n-1) have been obtained and
cf) >0 i=12c0en,  Kkeiitl,ee o N-1. (4.2)
Since An 2> 0 and Bn = 0 due to the nonnegativity of g(n;m,,m,) and
= n
c, = cM >0 (4.3)

due to (4.2), solving (2.12) for f(n) will result in one nonnegative solution, say s,. and one
negative solution, s,. Let

) = s,. ~ (4.4)
using f{1)(n) in (4.4), C{M*1), kan+1,n+2,+ ¢« N-1 can be computed. If

c{M*1) > 0, k=n+1,n+2,%+¢N-1 (4.5)

then

f(n) = (1)n) (4.6)

And one can proceed the algorithm to solve f(n+1).

It any of Cf‘"”) turns out to be negative, say,
cfP*V<o, cffril<o,e - cf* <o, (4.7)
1 2 r

then by choosing Cﬁ‘”) as

________
. e e N




g - L o e e o e

30

it & min { cﬁ{‘;‘), c&“:‘),”-,Cﬂ{‘r”) } (4.8)

the output index 2, say =%, at which the largest modulus occurs among negative
Cf("”), k=%,,%,,***.% can be obtained. For CS{‘”) to be nonnegative, f(n) has to satisfy

| o) - € anartim + 1 (anmpamamitn) 1 2 0 (@9)
where Cﬂ{‘) > 0 by (43). Let 0<a < 1. Then, (4.9) can be rewritten by
-1
a(2:n.n)f3(n) + ?;'Po(q(9.;n,m)+q(9,;m,n)}f(m)f(n) - ucﬂ{')*O. (4.10)

Choosing proper value for a and sofving (4.10) for f(n) will resuit in f(z)(n). 8y using this
(2)(n), the nonnegativity of C&"“’, k=n+1,n+2,*** ,N-1, can be rechecked. Note that

: cf*i) = (-acf) > 0. (4.11)
[
if all the inequalities in (4.5) are satisfied by f(z)(n), then set
tn) = #(2)n) (4.12)
i . o and proceed the algorithm to obtain f(n+1). If any one or more of inequalities in {4.5) are
- not satisfied by f(z)(n), then, by repeating the above procedure until all the inequaiities in
(4.5) can be satisfied, one can obtain a desired nonnegative f(n). It is easy to see that the
number of negative Cf(““) will be reduced by, at least, one whenever the above
E procedure is repeated. Hence, by repeating the above procedure at most r times, one can
obtain a nonnegative f(n) satisfying (4.5). This scheme is shown on Figure~10.
in the simulation SNR=30dB white gaussian noise is added to the blurred image in
e Figure-5(b). The resuiting noise added image is shown on Figure-11{a). By choosing
‘ a=0.5, the restared image in Figure-11(b) is obtained. The resulting SNR is 16d8.
e
'
o

i TSR
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Main Algorithm

t=0

) (n)

Compute  C{M*?)

ch- 1)

E&n*l)

= gk} - €+

-1
- é‘&n) . 3 {a(k:m,n)+q(k;n,m)}f(m)f(n) L———_
m=0

+ q(kn,n)f(n)

n+1 < k < N-1

- Yes
set f(n)=f{(n)
No
Choosecs?ﬂ) - min { Cf‘““): c&n+1)<0 }

t = t+

Solve for t(t)(n

. {12 . .
q(L;n,n)(f'"/(n)] ?n-o{q(l,n,m)-vq(Q;m,n)}f(m)f(t)(n) - °,CS{\) « 0

)

=1

Figure-10.

Suppiementary Algorithm to Figure-1
to Recover the Noisy Blurred Image
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N.K. Bose, "Multidimensional Systems stability,'" invited article in

Encvclopedia of Svstems and Control, Pergamon Press Ltd., England,

scheduled for publication in 1985.
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17. N.K. Bose, "Multivariate realization theory,'" invited article in Encv-

clopedia of Svstems and Control, Pergamon Press Ltd., England, scheduled

for publication in 1985.

18. N.K. Bose, "Symbolic and algebraic computations in multidimensional systems

1

theory," invited article in "Papers on the Future of Computer Algebra,"

SIGSAM Bulletin, ACM, vol. 18, #2, pp. 31-32.

19. N.K. Bose, "A system-theoretic approach to stability of sets of polynomials,"

invited article in Contemporary Mathematics series, AMS, scheduled to appear

in 1985.
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e. List of Personnel Associated with the Research Effort

N.K. Bose

Dr. N.K. Bose, Professor of Electrical Engineering and Professor of Mathe-
matics at the University of Pittsburgh served as the Principal Investigator.
He was responsible for initiating the research, conducting it to its success-
ful completion and supervising the graduate student researchers who worked

on this project.

Hector M. Valenzuela

Served as a graduate student researcher for eight man-months, from March 1,
1983 to October 31, 1983. He completed his Ph.D. dissertation entitled,
"Modeling of Multidimensional Linear Shift-Variant Systems with Applications,'
in October 1983. The research for this dissertation was supervised by Pro-
fessor N.K. Bose.

H.M. Kim

Served as a graduate student researcher for 13 man-months. Mr. Kim is cur-
rently a candidate for the Ph.D. degree in Electrical Engineering. He has
been performing his research in the area of restoration of bilinearly de-

graded images, under the supervision of Professor N.K. Bose.
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f. Interactions of Principal Investigactor

. Was invited to be a member of the Technical Program Committee of the Inter-
national Symposium on Circuits and Systems (ISCAS) held at Newport Beach,
California, May 2-4, 1983.

.. Was chairman and organizer of a Special Session on '"Multidimensional Systems:
Spatio-Temporal Filtering' at ISCAS, Newport Beach, California, May 2-4, 1983.

5. DeliQered a talk on "Modeling of 2-D LSV systems Qifh applications," based
on work co-authored with Hector M. Valenzuela at ISCAS, Newport Beach, Cali-
fornia May 2-4, 1983.

s. Invited to give a seminar on '""Rational approximants in systems theory," at
the U.K. - U.S.A. Conference on Rational Approximation and Interpolation,
University of South Florida, Tampa, Florida, December 16, 1983.

5. Invited to give a seminar on "A system-theoretic approach to stability of
sets of polynomials," at the NSF sponsored Conference on 'Linear Algebra
and its Role in Systems Theory,' Bowdoin College, Brunswick, Maine,

July 29-August 4, 1984,
6. Invited to give a talk entitled, '""Novel interpretations in multidimensional

' at the Special Session on "Two-Dimensional Circuits and

systems theory,'
Svstems Theory with Applications,' ISCAS, Montreal, May 10, 1984.

7. Invited to give a seminar on '"Basic tutorial in multidimensional systems,"
at Lehrstuhl fur Theoretische Elektrotechnik und Messtechnik, Universitaet
Karlsruhe, West Germany, July 19, 1984.

8. Invited to give a seminar on "Aspects of multidimensional Systems theory"
at Rutgers University, New Brunswick, New Jersev, on March 21, 1985. "

9. Invited to serve as a member of program committee of European Conference

on Computer Algebra (Syvmbolic and Algebraic Manipulation), Linz, Austria,

April 1-3, 1985.




10. Invited to give a seminar on ''Restoration of bilinearly degraded images,"”

8 ,1' v 'v. \ o

at ISCAS, Kyoto, Japan, June 7, 1985.

11. Invited to present a series of seminars and also to chair a session on

v

"Myl tidimensional digital signal processing 2," at the Seventh European

vy,

K

Conference on Circuit Theory and Design, September 1985.

12. Invited to give a talk on '"Status of recent results on image restoration

in Multidimensional Systems theory," at the 24th fBEE Conference on Deci-

sion and Control, Fort Lauderdale, Florida, December 1985.
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‘8. Specific Applicactions Stemming from Research Report

i

Principal Investigator: Dr. N.K. Bose

(a) Primitive Factorization of Bivariate Polvnomial Matrices Over an Arbitrarv
Field of Coefficients: Similar to the widespread use of irreducible matrix
fraction descriptions in the 1-D case, such representations in the 2-D case
are known to have g -sat potentials. An important outcome of the research
conducted has been the presentation of a primitive factorization theorem
for matrices of bivariate polynomials over an arbitrary but fixed field of
coefficients (1]. This, in turn, leads to a method for obtaining an ir-
reducible matrix fraction description for a matrix.of bivariate rational
functions over an arbitrary field. In fact the factorization results hold
not just for matrices over K(z,w] (K a field), but for matrices over D{w],
where D is an arbitrary Euclidean domain (or in theory, over a Principal
Ideal Domain). Importantly, the computations required to obtain the fac~
tors in K(z,w] depend neither on any extension field nor on the restric-
tion of algebraic closure, in contrast to earlier approaches.

The matrix fraction descriptions obtained are then used to study
stability of 2-D feedback systems where the plant and compensator each
corresponds to discrete 2-D causal or weakly causal multi-input/multi-
output systems. In particular, necessary and sufficient conditions are
obtained for an unstable plant to be stable and a classification of the
stabilizing compensators are given [2]. These results have proven and
potential applications since multidimensional feedback systems have been
proposed for various purposes like iterative image processing and restora-
tion [3,4]. Such image processing systems that contain feedback loops
are sometimes known to oscillate in space and time and these undesirable
oscillations can only be avoided if proper stability conditioms are
imposed oz the feedback systems.

(b) Multidimensional Linear Shift-Variant (LSV) Svstems: For any a-D discrete
positive cone causal (or weakly causal) LSV system, whose impulse response
is approximated by a K-th order degenerate sequence, a K-th order state-
space model is obtained (5]. This recursive state-space model is based on
a (2%-1)-points recurrence formula, which for the causal case uses the
(2%-1)-closest neighboring "past" points in addition to the input in order
to compute any current output state. For the weakly causal case, the (20-1)
computed points required gre not, in general, the closest neighbors to the
present output, which is being computed. Models for the 2-D LSV system and
its inverse can ba used to perform analysis and deconvolution problems very
efficiently. Examples of physically motivated applications making use of
the theoretical results have been worked out. These applications include
effects of 1-D LSV motion blur and the blurring due to Seidel aberrationms
of a lens; in particular, the 2-D LSV coma aberration was studied in detail.
The reconstruction of the original object from the LSV blurred image was
carried out successfully by means of the state~space model for the inverse
system. There are several advantages of the approach adopted in this re-
search. First, any impulse response sequence can be approximated arbit-
rarily closely by a K-th order degenerate sequence by increasing K. The
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recursive implezencaticn is associated with raeduced space-~cize
computational compiexity, so that it is conceivable that degraded
images may be processed in real time, when necessarvy. Thougn, all
types of point-spread functions cannot be modeled via the recursive
state-space model, the flexibility provided by the weak causality
condition broadens considerably the scopes for applications. Some-
times even a noncausal point-spread function (as illustrated by coma
aberration [5]) can be decomposed suitably, the recursive model
applied to each part, and the results carefully superiuposed to
yield the correct solution. Extensions and applicability of the
results to image restoration subject to nonlinear (especially
bilinear) degrading phenomena in the presence of nonstationary

noise is currently being investigated. " B
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Section c entitled "Details of Research Results Obtained," of this report.
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